The study was conducted as part of research work «Features of integrative and autonomic functions in the process of adaptation to the intellectual, emotional and physical stress" of the Department of Physiology of KhNMU. The aim of this work was to study the intersystem relationships that are the basis for the development of the body's resistance to the effects of stress factors, i.e., the development of adaptation syndrome in medical students. The object of the study were 217 students of 1-3 courses, which were examined in terms of the educational process. The features of intersystem integration the cardiorespiratory system on the basis of conjugation and integration of brain activity indeces based on intellectual efficiency in terms of a correction test. The study of the psychophysiological indicators complex in dynamics (3 years) revealed the formation of chronic emotional stress in medical students, the severity of which depends on the individual psychophysiological status of students. It was set that the formation of the adaptive optimum with psychoemotional stress occurs in only in 40% of students. Most of the students (60 %) indicate or initially insufficient adaptive capabilities, or an excessive rate, which naturally lead to psychological and autonomic disturbances in the organism.
Download full-text PDF |
Source |
---|
Small
January 2025
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
Developing single-particle nanocomposite with aqueous-phase orthogonal multicolor phosphorescence or multimodal luminescence holds great significance for optical coding, anti-counterfeiting encryption, bioimaging, and biosensing. However, it faces challenges such as a limited range of emission wavelengths and difficulties in controlling the synthesis process. In this work, a conjugate structure manipulation integrated luminophor confinement strategy is proposed to prepare carbon dots@upconversion nanoparticles (CDs@UCNPs) featuring aqueous-phase orthogonal multicolor room-temperature phosphorescence-upconversion luminescence (RTP-UCL) through wet-chemical synthetic methods.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Science and Technology of China, Chemistry and Material Science, No.96, JinZhai Road Baohe District, 230026, Hefei, CHINA.
Multi-resonance thermally activated delayed fluorescence (MR-TADF) materials have great potential for applications in ultrahigh-definition (UHD) organic light-emitting diode (OLED) displays, that benefit from their narrowband emission characteristic. However, key challenges such as aggregation-caused quenching (ACQ) effect and slow triplet-to-singlet spin-flip process, especially for blue MR-TADF materials, continue to impede their development due to planar skeletons and relatively large ΔESTs. Here, an effective strategy that incorporates multiple carbazole donors into the parent MR moieties is proposed, synergistically engineering their excited states and steric hindrances to enhance both the spin-flip process and quenching resistance.
View Article and Find Full Text PDFChemistry
December 2024
Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
The scalable synthesis of figure-eight π-systems is challenging for the conventional bottom-up approach. We have recently reported that the oxidative inner-bond cleavage of commercially available dibenzo[g,p]chrysene efficiently furnishes a figure-eight π-acceptor, cyclobisbiphenylenecarbonyl (CBBC), in large quantity. Furthermore, its donor-acceptor-type derivative with four N-carbazolyl substituents at the meta-positions of the carbonyl groups exhibited thermally activated delayed fluorescence (TADF) and circularly polarized luminescence (CPL) with a high |g| value of 1.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, NIS Interdepartmental and INSTM Reference Centre, University of Torino, Via G. Quarello 15/A, 10135 and Via P. Giuria 7, 10125 Turin, Italy.
In this study, we present for the first time the incorporation of two distinct nonsymmetrical squaraines (SQ) into hierarchically porous Hafnium-based UiO-66 Metal-Organic Frameworks (MOFs), each functionalized with various moieties, for application as photosensitizers in photodynamic therapy. SQs are meticulously designed to feature COOH moieties for interaction with the MOF's metallic cluster and bromine atoms to enhance intersystem crossing and reactive oxygen species (ROS) production. The distinct central functionalizations, one with squaric acid and the other with a dicyanovinyl-substituted squaric acid derivative, result in unique geometric conformations.
View Article and Find Full Text PDFSci Rep
December 2024
Semiconductor Physics, Institute of Physics, Chemnitz University of Technology, 09126, Chemnitz, Germany.
Magnetic field effects (MFEs) in thermally activated delayed fluorescence (TADF) materials have been shown to influence the reverse intersystem crossing (RISC) and to impact on electroluminescence (EL) and conductivity. Here, we present a novel model combining Cole-Cole and Lorentzian functions to describe low and high magnetic field effects originating from hyperfine coupling, the Δg mechanism, and triplet processes. We applied this approach to organic light-emitting devices of third generation based on tris(4-carbazoyl-9-ylphenyl)amine (TCTA) and 2,2',2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi), exhibiting blue emission, to unravel their loss mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!