Poly(N-isopropylacrylamide) (pNIPAm) is widely used to fabricate thermoresponsive surfaces for cell sheet detachment. Many complex and expensive techniques have been employed to produce pNIPAm substrates for cell culture. The spin-coating technique allows rapid fabrication of pNIPAm substrates with high reproducibility and uniformity. In this study, the dynamics of cell attachment, proliferation, and function on non-cross-linked spin-coated pNIPAm films of different thicknesses were investigated. The measurements of advancing contact angle revealed increasing contact angles with increasing film thickness. Results suggest that more hydrophilic 50 and 80 nm thin pNIPAm films are more preferable for cell sheet fabrication, whereas more hydrophobic 300 and 900 nm thick spin-coated pNIPAm films impede cell attachment. These changes in cell behavior were correlated with changes in thickness and hydration of pNIPAm films. The control of pNIPAm film thickness using the spin-coating technique offers an effective tool for cell sheet-based tissue engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b09711 | DOI Listing |
Int J Biol Macromol
November 2024
State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
To develop an optimized controlled-release system based on temperature-sensitive poly(N-isopropylacrylamide) (PNIPAAm) nanofibers, we prepared three types of temperature-controlled preservative films. These films were composed of PNIPAAm, polyvinyl alcohol (PVA), polylactic acid (PLA), and lemon essential oil (LEO), and were fabricated using uniaxial, coaxial, and layered spinning techniques. The nanofiber films obtained by layered spinning exhibited a sandwich structure, demonstrating superior physical barrier properties, mechanical strength, and thermal resistance.
View Article and Find Full Text PDFMolecules
September 2024
School of Civil Engineering, Liaoning Petrochemical University, Fushun 113001, China.
Poly(-isopropylacrylamide) (PNIPAM) offers a promising platform for non-invasive and gentle cell detachment. However, conventional PNIPAM-based substrates often suffer from limitations including limited stability and reduced reusability, which hinder their widespread adoption in biomedical applications. In this study, PNIPAM copolymer films were formed on the surfaces of glass slides or silicon wafers using a two-step film-forming method involving coating and grafting.
View Article and Find Full Text PDFInt J Biol Macromol
October 2024
School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; Shanghai Engineering Research Center for Clean Production of Textile Chemistry, Shanghai 201620, China.
A conductive film (PNIPAM-rGO/BC) was fabricated combining bacterial cellulose (BC) with poly-N-isopropylacrylamide-modified graphene oxide (PNIPAM-GO) through vacuum filtration and steam reduction techniques. The conductivity and performance of PNIPAM-GO composite and the resulting conductive film were studied. The key findings revealed that PNIPAM-GO composite exhibited a reversible temperature-sensitive behavior.
View Article and Find Full Text PDFRSC Adv
August 2024
School of Food Science and Engineering, Hefei University of Technology Hefei Anhui 230009 P.R. China
The mechanisms of specific ion effects on the properties of amide macromolecules is essential to understanding the evolution of life. Because most biological macromolecules contain both complex hydrophilic and hydrophobic structures, it is challenging to accurately identify the contributions of molecular structure to macroscopic behaviors. Herein, we investigated the influence of specific ion effects on the mechanical behaviors of poly(-isopropylacrylamide) and neutral polyacrylamide (, PNIPAM and NPAM), through a cross-scale study that includes single-molecule force spectroscopy, molecular dynamics simulation and macro mechanical method.
View Article and Find Full Text PDFACS Nano
August 2024
School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
Octopuses are notable creatures that can dynamically adhere to a variety of substrates owing to the efficient pressure control within their suction cups. An octopus' suckers are sealed at the rim and function by reducing the pressure inside the cavity, thereby creating a pressure difference between the ambient environment and the inner cavity. Inspired by this mechanism, we developed a plasmonic smart adhesive patch (Plasmonic AdPatch) with switchable adhesion in response to both temperature changes and near-infrared (NIR) light.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!