Emerging knowledge indicates the difficulty in categorizing unusual cystic fibrosis (CF) mutations, with regard to both pathogenic mechanism and theratype. As case in point, we present data concerning P67L mutation of the cystic fibrosis transmembrane conductance regulator (CFTR), a defect carried by a small number of individuals with CF and sometimes attributed to a channel conductance abnormality. Findings from our laboratory and others establish that P67L causes protein misfolding, disrupts maturation, confers gating defects, is thermally stable, and exhibits near normal conductance. These results provide one framework by which rare CF alleles such as P67L can be more comprehensively profiled vis-à-vis molecular pathogenesis. We also demonstrate that emerging CF treatments - ivacaftor and lumacaftor - can mediate pronounced pharmacologic activation of P67L CFTR. Infrequent CF alleles are often improperly characterized, in part, due to the small numbers of patients involved. Moreover, access to new personalized treatments among patients with ultra-orphan genotypes has been limited by difficulty arranging phase III clinical trials, and off-label prescribing has been impaired by high drug cost and difficulty arranging third party reimbursement. Rare CFTR mutations such as P67L are emblematic of the challenges to "precision" medicine, including use of the best available mechanistic knowledge to treat patients with unusual forms of disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5029786PMC
http://dx.doi.org/10.1172/jci.insight.86581DOI Listing

Publication Analysis

Top Keywords

p67l cftr
8
cystic fibrosis
8
difficulty arranging
8
p67l
6
analysis cystic
4
cystic fibrosis-associated
4
fibrosis-associated p67l
4
cftr
4
cftr illustrates
4
illustrates barriers
4

Similar Publications

Elexacaftor/VX-445-mediated CFTR interactome remodeling reveals differential correction driven by mutation-specific translational dynamics.

J Biol Chem

October 2023

Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA; Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA. Electronic address:

Cystic fibrosis (CF) is one of the most prevalent lethal genetic diseases with over 2000 identified mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Pharmacological chaperones such as lumacaftor (VX-809), tezacaftor (VX-661), and elexacaftor (VX-445) treat mutation-induced defects by stabilizing CFTR and are called correctors. These correctors improve proper folding and thus facilitate processing and trafficking to increase the amount of functional CFTR on the cell surface.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is one of the most prevalent lethal genetic diseases with over 2000 identified mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Pharmacological chaperones such as Lumacaftor (VX-809), Tezacaftor (VX-661) and Elexacaftor (VX-445) treat mutation-induced defects by stabilizing CFTR and are called correctors. These correctors improve proper folding and thus facilitate processing and trafficking to increase the amount of functional CFTR on the cell surface.

View Article and Find Full Text PDF

Pharmacological chaperones represent a class of therapeutic compounds for treating protein misfolding diseases. One of the most prominent examples is the FDA-approved pharmacological chaperone lumacaftor (VX-809), which has transformed cystic fibrosis (CF) therapy. CF is a fatal disease caused by mutations in the CF transmembrane conductance regulator (CFTR).

View Article and Find Full Text PDF

Trikafta, a triple-combination drug, consisting of folding correctors VX-661 (tezacaftor), VX-445 (elexacaftor) and the gating potentiator VX-770 (ivacaftor) provided unprecedented clinical benefits for patients with the most common cystic fibrosis (CF) mutation, F508del. Trikafta indications were recently expanded to additional 177 mutations in the CF transmembrane conductance regulator (CFTR). To minimize life-long pharmacological and financial burden of drug administration, if possible, we determined the necessary and sufficient modulator combination that can achieve maximal benefit in preclinical setting for selected mutants.

View Article and Find Full Text PDF

Alteration of Membrane Cholesterol Content Plays a Key Role in Regulation of Cystic Fibrosis Transmembrane Conductance Regulator Channel Activity.

Front Physiol

June 2021

Division of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory + Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States.

Altered cholesterol homeostasis in cystic fibrosis patients has been reported, although controversy remains. As a major membrane lipid component, cholesterol modulates the function of multiple ion channels by complicated mechanisms. However, whether cholesterol directly modulates cystic fibrosis transmembrane conductance regulator (CFTR) channel function remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!