High mobility thin-film transistor technologies that can be implemented using simple and inexpensive fabrication methods are in great demand because of their applicability in a wide range of emerging optoelectronics. Here, a novel concept of thin-film transistors is reported that exploits the enhanced electron transport properties of low-dimensional polycrystalline heterojunctions and quasi-superlattices (QSLs) consisting of alternating layers of InO, GaO and ZnO grown by sequential spin casting of different precursors in air at low temperatures (180-200 °C). Optimized prototype QSL transistors exhibit band-like transport with electron mobilities approximately a tenfold greater (25-45 cm V s) than single oxide devices (typically 2-5 cm V s). Based on temperature-dependent electron transport and capacitance-voltage measurements, it is argued that the enhanced performance arises from the presence of quasi 2D electron gas-like systems formed at the carefully engineered oxide heterointerfaces. The QSL transistor concept proposed here can in principle extend to a range of other oxide material systems and deposition methods (sputtering, atomic layer deposition, spray pyrolysis, roll-to-roll, etc.) and can be seen as an extremely promising technology for application in next-generation large area optoelectronics such as ultrahigh definition optical displays and large-area microelectronics where high performance is a key requirement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5016782PMC
http://dx.doi.org/10.1002/advs.201500058DOI Listing

Publication Analysis

Top Keywords

mobility thin-film
8
thin-film transistors
8
heterojunctions quasi-superlattices
8
electron transport
8
high electron
4
electron mobility
4
transistors based
4
based solution-processed
4
solution-processed semiconducting
4
semiconducting metal
4

Similar Publications

The incorporation of polymeric insulators has led to notable achievements in the field of organic semiconductors. By altering the blending concentration, polymeric insulators exhibit extensive capabilities in regulating molecular configuration, film crystallinity, and mitigation of defect states. However, current research suggests that the improvement in such physical properties is primarily attributed to the enhancement of thin film morphology, an outcome that seems to be an inevitable consequence of incorporating insulators.

View Article and Find Full Text PDF

Instable Microdeformation and Strain Recovery in Amorphous LiPON Thin Layer.

ACS Omega

December 2024

HUN-REN Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary.

Lithium phosphorus oxynitride (LiPON) is a crucial electrolyte for all-solid-state thin-film batteries due to its sufficient ionic conductivity. Understanding the mechanical behavior of LiPON films is crucial for further technological development. Previous studies noted unexpected ductility and strain recovery in amorphous LiPON during sharp-ended tip indentations revealing pile-up formation and densification as the main deformation mechanisms.

View Article and Find Full Text PDF

Low-Frequency Noise Related to the Scattering Effect in p-Type Copper(I) Oxide Thin-Film Transistors.

ACS Appl Mater Interfaces

December 2024

Department of Electronic Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea.

In this study, we investigate the origins of low-frequency noise (LFN) and 1/ noise in CuO thin-film transistors (TFTs). The static direct current (DC) - characterization demonstrates that the channel resistance () contributes significantly to mobility degradation in the TFTs, with channel thickness () controlled through the plasma-enhanced atomic layer deposition (PEALD) process. The 1/ noise followed the Hooge mobility fluctuation (HMF) model, and it was observed that both Coulomb and phonon scattering within the channel, which increased with a decrease in , contributed simultaneously.

View Article and Find Full Text PDF

This study introduces a novel method for achieving highly ordered-crystalline InGaO [0 ≤ x ≤ 0.6] thin films on Si substrates at 250 °C using plasma-enhanced atomic-layer-deposition (PEALD) with dual seed crystal layers (SCLs) of γ-AlO and ZnO. Field-effect transistors (FETs) with random polycrystalline InGaO channels (grown without SCLs) show a mobility (µFE) of 85.

View Article and Find Full Text PDF

The diffusive gradient in thin films technique (DGT), with a resin gel based on Lewatit® FO 36 was used for the first time to predict arsenic (As) bioavailability in soils collected in different environmental contexts. The predicted bioavailability, determined by fluxes to DGT, was compared with the bioavailability and bioaccumulation in the plants (Calendula officinalis), where a strong correlation was observed (r = 0.8857 (C/C) and r = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!