Comparison of solid and fluid constitutive models of bone marrow during trabecular bone compression.

J Biomech

Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, United States. Electronic address:

Published: October 2016

The mechanical environment and mechanobiology of bone marrow may play essential roles in bone adaptation, cancer metastasis, and immune cell regulation. However, the location of marrow within the trabecular pore space complicates experimental measurement of marrow mechanics. Computational models provide a means to assess the shear stress and pressure in the marrow during physiological loading, but they rely on accurate inputs for the marrow and the physics assumed for the interaction of bone and marrow. Elastic, viscoelastic, and fluid constitutive properties have all been reported from experimental measurements of marrow properties. It is unclear whether this ambiguity reflects the various length-scales, loading rates, and boundary conditions of the experiments, or if the material models are sufficiently similar as to be interchangeable. To address this question, we analyzed both the mean shear stress and its spatial distribution induced in marrow during compression of trabecular bone cubes when using linear elastic, neo-Hookean, viscoelastic, and power-law fluid constitutive models. Experimentally reported parameters were initially applied for all four constitutive models, resulting in poor agreement. The parameters of the soft solid models were calibrated by linear interpolation so that the volume averaged shear stress agreed with the fluid model for each, but this could only be accomplished on a specimen-by-specimen basis. Following calibration, the root-mean-squared (RMS) difference between the solid and fluid constitutive models was still greater than 26% even when the overall mean shear stress was in close agreement, indicating that the spatial distribution of stress is also sensitive to the constitutive model. As such, the choice of constitutive model should be backed by a strong rationale, and results should be interpreted with care.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2016.09.018DOI Listing

Publication Analysis

Top Keywords

fluid constitutive
16
constitutive models
16
shear stress
16
bone marrow
12
marrow
9
solid fluid
8
marrow trabecular
8
trabecular bone
8
spatial distribution
8
constitutive model
8

Similar Publications

The present article focuses on the analysis of the two-phase flow of blood via a stenosed artery under the influence of a pulsatile pressure gradient. The core and plasma regions of flow are modeled using the constitutive relations of Herschel-Bulkley and the Newtonian fluids, respectively. The problem is modeled in a cylindrical coordinate system.

View Article and Find Full Text PDF

Surface-active agents (surfactants) release potential energy as they migrate from one of two adjacent fluids onto their fluid-fluid interface, a process that profoundly impacts the system's energy and entropy householding. The continuum thermodynamics underlying such a surfactant-enriched binary-fluid system has not yet been explored comprehensively. In this article, we present a mathematical description of such a system, in terms of balance laws, equations of state, and permissible constitutive relations and interface conditions, that satisfies the first and second law of thermodynamics.

View Article and Find Full Text PDF

Electrorheological fluids are suspensions that are characterized by a strong functional dependence of their constitutive behavior on the local electric field. While such fluids are known to be promising in different applications of microfluidics including electrokinetic flows, their capabilities of controlling ion transport and preferential solute segregation in confined fluidic systems remain to be explored. In this work, we bring out the unique role of electrorheological fluids in orchestrating the selective enrichment and depletion of charged species in variable area microfluidic channels.

View Article and Find Full Text PDF

Analysis of the haemodynamic changes caused by surgical and transcatheter aortic valve replacements by means fluid-structure interaction simulations.

Comput Biol Med

January 2025

UCL Mechanical Engineering, University College London, UK; Ri.MED Foundation, Palermo, Italy; University of Palermo, Department of Engineering, Palermo, Italy. Electronic address:

Aortic valve replacements, both surgical and transcatheter, are nowadays widely employed treatments. Although clinically effective, these procedures are correlated with potentially severe clinical complications which can be associated with the non-physiological haemodynamics that they establish. In this work, the fluid dynamics changes produced by surgical and transcatheter aortic valve replacements are analysed and compared with an ideal healthy native valve configuration, employing advanced fluid-structure interaction (FSI) simulations.

View Article and Find Full Text PDF

Epithelial cell collectives migrate through tissue interfaces and crevices to orchestrate development processes, tumor invasion, and wound healing. Naturally, the traversal of cell collective through confining environments involves crowding due to narrowing spaces, which seems tenuous given the conventional inverse relationship between cell density and migration. However, the physical transitions required to overcome such epithelial densification for migration across confinements remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!