A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicted structure of a Minus-C OBP from Batocera horsfieldi (Hope) suggests an intermediate structure in evolution of OBPs. | LitMetric

Predicted structure of a Minus-C OBP from Batocera horsfieldi (Hope) suggests an intermediate structure in evolution of OBPs.

Sci Rep

Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P. R. China.

Published: September 2016

Odorant binding proteins (OBPs) transport hydrophobic odorants from the environment to odorant receptors and play an important role in specific recognition of volatiles. Here, we expressed and purified a minus-C OBP, BhorOBPm2, from Batocera horsfieldi, a major pest of Popolus, to determine its binding characteristics with 58 candidate volatiles using a fluorescence competition-binding assay. We showed that BhorOBPm2 exhibited high binding affinity with chain volatiles and that ligands were selected based on chain length. In order to elucidate the binding mechanism, homology modeling and molecular-docking experiments were performed to investigate interactions between BhorOBPm2 and volatiles. The predicted structure with only two disulfide bonds showed one continuous channel for ligand binding, similar to classic OBPs AgamOBP1 and CquiOBP1. Unexpectedly, we observed a larger binding pocket for BhorOBPm2 and broader specificity for ligands than classic OBPs due to the expansive flexibility of BhorOBPm2 resulting from a lack of disulfide bonds. These findings suggested that BhorOBPm2 might present an intermediate structure in the evolution of OBPs. Furthermore, we designed two mutant proteins to simulate and verify functions of the C-terminal region. The changes in binding affinity observed here indicated a novel action differing from that of the "lid" described in previous studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5034290PMC
http://dx.doi.org/10.1038/srep33981DOI Listing

Publication Analysis

Top Keywords

predicted structure
8
minus-c obp
8
batocera horsfieldi
8
intermediate structure
8
structure evolution
8
evolution obps
8
binding affinity
8
disulfide bonds
8
classic obps
8
binding
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!