We have designed, fabricated and characterized dual-wavelength metasurfaces that function at two assigned terahertz wavelengths with independent phase and amplitude control at each wavelength. Specifically, we have designed a dual-wavelength achromatic metasurface-based deflector deflecting the incident wave to the same direction at two selected wavelengths, which has circumvented the critical limitation of strong wavelength dependence in the planar metasurface-based devices caused by the resonant nature of the plasmonic structures. As a proof of concept demonstration, the designed dual-wavelength achromatic deflector has been fabricated, and characterized experimentally. The numerical simulations, theoretical predictions, and experimental results agree very well with each other, demonstrating the property of independently manipulating the phase profiles at two wavelengths. Furthermore, another unique feature of the designed metasurface is that it can independently tailor both the phase and amplitude profiles at two wavelengths. This property has been numerically validated by engineering a metasurface-based device to simultaneously generate two diffraction orders at two desired wavelengths.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5034287 | PMC |
http://dx.doi.org/10.1038/srep34020 | DOI Listing |
J Neural Eng
January 2025
Precision Neuroscience, 54 W 21st Street, New York, New York, 10010, UNITED STATES.
Localization of function within the brain and central nervous system is an essential aspect of clinical neuroscience. Classical descriptions of functional neuroanatomy provide a foundation for understanding the functional significance of identifiable anatomic structures. However, individuals exhibit substantial variation, particularly in the presence of disorders that alter tissue structure or impact function.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institute of Semiconductor Technology (IHT), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany.
A novel piezoresistive cantilever microprobe (PCM) with an integrated electrothermal or piezoelectric actuator has been designed to replace current commercial PCMs, which require external actuators to perform contact-resonance imaging (CRI) of workpieces and avoid unwanted "forest of peaks" observed at large travel speed in the millimeter-per-second range. Initially, a PCM with integrated resistors for electrothermal actuation (ETA) was designed, built, and tested. Here, the ETA can be performed with a piezoresistive Wheatstone bridge, which converts mechanical strain into electrical signals by boron diffusion in order to simplify the production process.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China.
Ultrasonic welding (USW) is considered one of the most suitable methods to join semi-crystalline carbon fiber-reinforced thermoplastics (CFRTPs). The degree of crystallinity (DoC) of the semi-crystalline resin will affect the ultrasonic welding process by affecting the mechanical properties of the base material. In addition, ultrasonic welding parameters will affect the joint performance by affecting the DoC of the welded material at the welding interface.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi 756-0884, Japan.
The application of regenerative therapy through stem cell transplantation has emerged as a promising avenue for the treatment of diabetes mellitus (DM). Transplanted tissue homeostasis is affected by disturbances in the clock genes of stem cells. The aim of this study is to investigate the diurnal variation in mitochondrial genes and function after transplantation of adipose-derived mesenchymal stem cells (T2DM-ADSCs) from type 2 diabetic patients into immunodeficient mice.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
School of Microelectronics, Northwestern Polytechnical University, No. 1 Dongxiang Road, Chang'an District, Xi'an 710129, China.
In low intermediate frequency (low-IF) receivers, image interference rejection is one of the core tasks to be accomplished. Conventional active polyphase filters (APPFs) are unable to have a sufficient image rejection ratio (IRR) at high operating frequencies due to the degradation of the IRR by the amplitude and phase imbalances produced by the secondary pole. The proposed solution to the above problem is a frequency-dependent image rejection enhancement technique based on secondary pole compensation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!