In this study, the concept of polymer electrodes integrated with a wireless electrocardiogram (ECG) system was described. Polymer electrodes for long-term ECG measurements were fabricated by loading high content of carbon nanotubes (CNTs) in polydimethylsiloxane. Silver nanoparticles (Ag NPs) were added to increase the flexibility of the polymer and the conductivity of the electrode. An ECG electrode patch was fabricated by integrating the electrodes with an adhesive polydimethylsiloxane (aPDMS) layer. Holes in the electrode filled with aPDMS can enable robust contact between the electrode and skin, reducing motion artifacts. A wireless ECG measurement system was developed and adapted to the polymer electrodes. The polymer electrodes combined with the measurement system were successfully applied in wireless, long-term recording of ECG signals. An eleven-day continuous test showed that the ECG signal did not degrade over time. The results of attach/detach tests demonstrated that the ECG signal was affected by motion artifacts after six attach/detach cycles. The electrodes produced are flexible and exhibit good ECG performance, and therefore can be used in wearable medical monitoring systems. The approach proposed in this study holds significant promise for commercial application in medical fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09205063.2016.1239951 | DOI Listing |
ACS Sens
January 2025
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
Herein, we present the development and evaluation of a molecularly imprinted polymer (MIP) sensor for the sensitive and selective detection of -nitrosodimethylamine (NDMA) in aqueous environments. MIP coatings over electrochemically active electrodes enable NDMA detection with a notably low detection limit of 1.16 ppb.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute for Theoretical Physics, Georg-August University of Göttingen, 37077 Göttingen, Germany.
A Single-Chain-in-Mean-Field (SCMF) algorithm was introduced to study block copolymer electrolytes in nonequilibrium conditions. This method self-consistently combines a particle-based description of the polymer with a generalized diffusion equation for the ionic fluxes, thus exploiting the time scale separation between fast ion motion and the slow polymer relaxation and self-assembly. We apply this computational method to study ion fluxes in electrochemical cells containing poly(ethylene oxide)-polystyrene (PEO-PS) block copolymers with added lithium salt.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
Carcinoembryonic antigen (CEA) and C-reactive protein (CRP) are biomacromolecules known as cancer and inflammatory markers. Thus, they play a crucial role in early cancer diagnosis, post-treatment recurrence detection, and tumor risk assessment. This paper describes the development of an ultrasensitive and selective imprinted paper-based analytical device (PAD) as impedance sensor for determination of CEA and CRP in serum samples for point-of-care testing (POCT).
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Emotion, Cognition, & Behavior Research Group, Korea Brain Research Institute 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea. Electronic address:
In this study, we present ECoGScope, a versatile neural interface platform designed to integrate multiple functions for advancing neural network research. ECoGScope combines an electrocorticography (ECoG) electrode array with a commercial microendoscope, enabling simultaneous recording of ECoG signals and fluorescence imaging. The electrode array, constructed from highly flexible and transparent polymers, ensures conformal contact with the brain surface, allowing unobstructed optical monitoring of neural activity alongside electrophysiological recordings.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biomedical Engineering, State University of New York at Binghamton, Binghamton, NY, 13902, USA.
Creating durable, motion-compliant neural interfaces is crucial for accessing dynamic tissues under in vivo conditions and linking neural activity with behaviors. Utilizing the self-alignment of nano-fillers in a polymeric matrix under repetitive tension, here, we introduce conductive carbon nanotubes with high aspect ratios into semi-crystalline polyvinyl alcohol hydrogels, and create electrically anisotropic percolation pathways through cyclic stretching. The resulting anisotropic hydrogel fibers (diameter of 187 ± 13 µm) exhibit fatigue resistance (up to 20,000 cycles at 20% strain) with a stretchability of 64.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!