Identification of disease states associated with coagulopathy in trauma.

BMC Med Inform Decis Mak

Department of Computer Science, University of California, Santa Barbara, USA.

Published: September 2016

Background: Trauma is the leading cause of death between the ages of 1 to 44 in the United States. Blood loss is the primary cause of these deaths. The discrimination of states through which patients transition would be helpful in understanding the disease process, and in identification of critical states and appropriate interventions. Even though these states are strongly associated with patients' blood composition data, there has not been a way to directly identify them. Statistical tools such as hidden Markov models can be used to infer the discrete latent states from the blood composition data.

Methods: We applied a hidden Markov model to time-series multivariate patient measurements from the UCSF/ San Francisco General Hospital and Trauma Center. Ten blood factor related measurements were used to identify the model: factors II, V, VII, VIII, IX, X, antithrombin III, protein C, prothrombin time and partial thromboplastin time. Missing data in the time-series dataset was considered in the hidden Markov model. The number of states was determined by minimizing the Bayesian information criterion across different numbers of states.

Results: After preprocessing, 1090 patients with a total number of 2176 time point measurements were included in the analysis. The hidden Markov model identified 6 disease states and 3 stages. We analyzed their relationships to the blood composition data and the coagulation cascade. The states are very indicative of the disease progression status of patients.

Conclusions: Six disease states and 3 stages associated with Coagulopathy in trauma were identified in our study. The hidden Markov model can be useful in identifying latent states by using patients' time-series multivariate data. The information obtained from the states and stages can be useful in the clinical setting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5034569PMC
http://dx.doi.org/10.1186/s12911-016-0360-xDOI Listing

Publication Analysis

Top Keywords

hidden markov
20
markov model
16
states
12
disease states
12
blood composition
12
states stages
12
states associated
8
associated coagulopathy
8
coagulopathy trauma
8
states blood
8

Similar Publications

Translational validity of mouse models of Alzheimer's disease (AD) is variable. Because change in weight is a well-documented precursor of AD, we investigated whether diversity of human AD risk weight phenotypes was evident in a longitudinally characterized cohort of 1,196 female and male humanized APOE (hAPOE) mice, monitored up to 28 months of age which is equivalent to 81 human years. Autoregressive Hidden Markov Model (AHMM) incorporating age, sex, and APOE genotype was employed to identify emergent weight trajectories and phenotypes.

View Article and Find Full Text PDF

Lectins are non-covalent glycan-binding proteins found in all living organisms, binding specifically to carbohydrates through glycan-binding domains. Lectins have various biological functions, including cell signaling, molecular recognition, and innate immune responses, which play multiple roles in the physiological and developmental processes of organisms. Moreover, their diversity enables biotechnological exploration as biomarkers, biosensors, drug-delivery platforms, and lead molecules for anticancer, antidiabetic, and antimicrobial drugs.

View Article and Find Full Text PDF

Noise reduction of low-dose electron holograms using the wavelet hidden Markov model.

Microscopy (Oxf)

January 2025

The Ultramicroscopy Research Center, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.

The precision in electron holography studies on electrostatic and magnetic fields depends on the image quality of an electron hologram. Enhancing the image quality of electron holograms is essential for the comprehensive analysis of weak electromagnetic fields; however, extended electron beam irradiation can lead to undesirable radiation damage and contamination. Recent studies have demonstrated that noise reduction using the wavelet hidden Markov model (WHMM) can improve the precision of phase analysis for limited thin-foiled crystals.

View Article and Find Full Text PDF

Speech comprehension involves the dynamic interplay of multiple cognitive processes, from basic sound perception, to linguistic encoding, and finally to complex semantic-conceptual interpretations. How the brain handles the diverse streams of information processing remains poorly understood. Applying Hidden Markov Modeling to fMRI data obtained during spoken narrative comprehension, we reveal that the whole brain networks predominantly oscillate within a tripartite latent state space.

View Article and Find Full Text PDF

Polariton lattices as binarized neuromorphic networks.

Light Sci Appl

January 2025

Spin-Optics laboratory, St. Petersburg State University, St. Petersburg, 198504, Russia.

We introduce a novel neuromorphic network architecture based on a lattice of exciton-polariton condensates, intricately interconnected and energized through nonresonant optical pumping. The network employs a binary framework, where each neuron, facilitated by the spatial coherence of pairwise coupled condensates, performs binary operations. This coherence, emerging from the ballistic propagation of polaritons, ensures efficient, network-wide communication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!