Flow cytometric analysis is a recommended tool in the diagnosis of myelodysplastic syndromes. Current flow cytometric approaches evaluate the (im)mature myelo-/monocytic lineage with a median sensitivity and specificity of ~71% and ~93%, respectively. We hypothesized that the addition of erythroid lineage analysis could increase the sensitivity of flow cytometry. Hereto, we validated the analysis of erythroid lineage parameters recommended by the International/European LeukemiaNet Working Group for Flow Cytometry in Myelodysplastic Syndromes, and incorporated this evaluation in currently applied flow cytometric models. One hundred and sixty-seven bone marrow aspirates were analyzed; 106 patients with myelodysplastic syndromes, and 61 cytopenic controls. There was a strong correlation between presence of erythroid aberrancies assessed by flow cytometry and the diagnosis of myelodysplastic syndromes when validating the previously described erythroid evaluation. Furthermore, addition of erythroid aberrancies to two different flow cytometric models led to an increased sensitivity in detecting myelodysplastic syndromes: from 74% to 86% for the addition to the diagnostic score designed by Ogata and colleagues, and from 69% to 80% for the addition to the integrated flow cytometric score for myelodysplastic syndromes, designed by our group. In both models the specificity was unaffected. The high sensitivity and specificity of flow cytometry in the detection of myelodysplastic syndromes illustrates the important value of flow cytometry in a standardized diagnostic approach. The trial is registered at www.trialregister.nl as NTR1825; EudraCT n.: 2008-002195-10.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5286939PMC
http://dx.doi.org/10.3324/haematol.2016.147843DOI Listing

Publication Analysis

Top Keywords

myelodysplastic syndromes
32
flow cytometry
24
flow cytometric
20
erythroid lineage
12
flow
11
lineage analysis
8
myelodysplastic
8
syndromes
8
diagnosis myelodysplastic
8
sensitivity specificity
8

Similar Publications

Advancing Drug Development in Myelodysplastic Syndromes.

Blood Adv

December 2024

U.S. Food and Drug Administration, Silver Spring, Maryland, United States.

Myelodysplastic syndromes/neoplasms (MDS) are heterogeneous stem cell malignancies characterized by poor prognosis and no curative therapies outside of allogeneic hematopoietic stem cell transplantation. Despite some recent approvals by the United States Food and Drug Administration (FDA), (e.g.

View Article and Find Full Text PDF

Mutations in the SLC25A38 gene are responsible for the second most common form of congenital sideroblastic anemia (CSA), a severe condition for which no effective treatment exists. We developed and characterized a K562 erythroleukemia cell line with markedly reduced expression of the SLC25A38 protein (A38-low cells). This model successfully recapitulated the main features of CSA, including reduced heme content and mitochondrial respiration, increase in mitochondrial iron, ROS levels and sensitivity to oxidative stress.

View Article and Find Full Text PDF

Application of Pathomic Features for Differentiating Dysplastic Cells in Patients with Myelodysplastic Syndrome.

Bioengineering (Basel)

December 2024

Department of Laboratory Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07440, Republic of Korea.

Myelodysplastic syndromes (MDSs) are a group of hematologic neoplasms accompanied by dysplasia of bone marrow (BM) hematopoietic cells with cytopenia. Recently, digitalized pathology and pathomics using computerized feature analysis have been actively researched for classifying and predicting prognosis in various tumors of hematopoietic tissues. This study analyzed the pathomic features of hematopoietic cells in BM aspiration smears of patients with MDS according to each hematopoietic cell lineage and dysplasia.

View Article and Find Full Text PDF

[Interpretation of the guidelines for diagnosing and treating paroxysmal nocturnal hemoglobinuria in China (2024)].

Zhonghua Xue Ye Xue Za Zhi

December 2024

Department of Hematology, General Hospital, Tianjin Medical University, Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin Institute of Hematology, Tianjin 300052, China.

Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal disorder of hematopoietic stem cells induced by PIG-A gene mutations. It is clinically manifested by hemolysis, bone marrow failure, and high-risk concurrent thrombosis, which are life-threatening in severe cases. Significant progress has been made in the pathogenesis research and clinical diagnosis and treatment of PNH in recent years.

View Article and Find Full Text PDF

[Clinical observation of allogeneic hematopoietic stem cell transplantation for treating five cases of classic paroxysmal nocturnal hemoglobinuria].

Zhonghua Xue Ye Xue Za Zhi

December 2024

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China Tianjin Institutes of Health Science, Tianjin 301600, China.

This study enrolled five patients with classic paroxysmal nocturnal hemoglobinuria (cPNH) who underwent allogeneic hematopoietic stem cell transplantation in our hospital from 2019 to 2023. All five patients were male, with a median age of 26 (range: 26-46) years. The median time from diagnosis to allo-HSCT was 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!