Bacillus pumilus group strains have been studied due their agronomic, biotechnological or pharmaceutical potential. Classifying strains of this taxonomic group at species level is a challenging procedure since it is composed of seven species that share among them over 99.5% of 16S rRNA gene identity. In this study, first, a whole-genome in silico approach was used to accurately demarcate B. pumilus group strains, as a case of highly phylogenetically related taxa, at the species level. In order to achieve that and consequently to validate or correct taxonomic identities of genomes in public databases, an average nucleotide identity correlation, a core-based phylogenomic and a gene function repertory analyses were performed. Eventually, more than 50% such genomes were found to be misclassified. Hierarchical clustering of gene functional repertoires was also used to infer ecotypes among B. pumilus group species. Furthermore, for the first time the machine-learning algorithm Random Forest was used to rank genes in order of their importance for species classification. We found that ybbP, a gene involved in the synthesis of cyclic di-AMP, was the most important gene for accurately predicting species identity among B. pumilus group strains. Finally, principal component analysis was used to classify strains based on the distances between their ybbP genes. The methodologies described could be utilized more broadly to identify other highly phylogenetically related species in metagenomic or epidemiological assessments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5033322PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163098PLOS

Publication Analysis

Top Keywords

pumilus group
20
highly phylogenetically
12
group strains
12
bacillus pumilus
8
group species
8
species level
8
species
7
strains
6
group
6
pumilus
5

Similar Publications

Impact of Ultra-High-Pressure Homogenisation on the Inactivation of and Spores in Sheep and Cow Milk.

Foods

October 2024

Smart Foods and Bioproducts Group, AgResearch Ltd., Private Bag 11008, Palmerston North 4442, New Zealand.

The efficacy of ultra-high-pressure homogenisation (UHPH) in inactivating ATCC 27142 and ATCC 6633 spores suspended in sheep and cow milk was investigated. The UHPH treatment was conducted at 200 and 250 MPa with an inlet temperature of 85 °C, resulting in homogenising valve temperatures of 117 °C and 127 °C, respectively. To isolate the role of temperature and pressure in the inactivation of bacterial spores, the UHPH treatment was repeated at 250 MPa with a lower inlet temperature of 70 °C that resulted in a valve temperature of 117 °C.

View Article and Find Full Text PDF

This study investigates whether TS1 improves growth performance and alleviates inflammatory damage in broilers and explored its feasibility as an antibiotic alternative. We divided 240 one-day-old AA308 white-finned broilers into five groups (con, LPS, TS1L + LPS, TS1M + LPS and TS1H + LPS). The TS1L + LPS, TS1M + LPS and TS1H + LPS groups were fed TS1 for 15 days by gavage.

View Article and Find Full Text PDF

This research evaluated the efficacy of mixed Bacillus strains probiotic supplements in mitigating acute thermal-induced stress in Nile tilapia (Oreochromis niloticus). Three experimental fish groups involved 135 Nile tilapia (49 ± 2 g); one control (no added probiotics), 0.5, and 1% of selected Bacillus strains (B.

View Article and Find Full Text PDF

Effects of trehalose and sodium alginate on microbially induced carbonate precipitation.

Environ Res

December 2024

State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.

The process of altering the microbial-induced carbonate precipitation (MICP) by adding additives has been extensively studied. The impact of polysaccharides, as an important component of bacteria, still requires deeper exploration on MICP. This work thus focuses on two types of sugars, sodium alginate (SA) and trehalose (Tre), to explore their effects on biomineralization of carbonate induced by Bacillus pumilus Z6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!