ATM (ataxia-telangiectasia, mutated) is an important cancer susceptibility gene that encodes a key apical kinase in the DNA damage response pathway. ATM mutations in the germ line result in ataxia-telangiectasia (A-T), a rare genetic syndrome associated with hypersensitivity to double-strand DNA breaks and predisposition to lymphoid malignancies. ATM expression is limited by a tightly regulated nonsense-mediated RNA decay (NMD) switch exon (termed NSE) located in intron 28. In this study, we identify antisense oligonucleotides that modulate NSE inclusion in mature transcripts by systematically targeting the entire 3.1-kb-long intron. Their identification was assisted by a segmental deletion analysis of transposed elements, revealing NSE repression upon removal of a distant antisense Alu and NSE activation upon elimination of a long terminal repeat transposon MER51A. Efficient NSE repression was achieved by delivering optimized splice-switching oligonucleotides to embryonic and lymphoblastoid cells using chitosan-based nanoparticles. Together, these results provide a basis for possible sequence-specific radiosensitization of cancer cells, highlight the power of intronic antisense oligonucleotides to modify gene expression, and demonstrate transposon-mediated regulation of NSEs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5105335 | PMC |
http://dx.doi.org/10.1089/nat.2016.0635 | DOI Listing |
Small
January 2025
Department of Chemistry, McGill University, 801, Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada.
Oligonucleotide therapeutics, including antisense oligonucleotides and small interfering RNA, offer promising avenues for modulating the expression of disease-associated proteins. However, challenges such as nuclease degradation, poor cellular uptake, and unspecific targeting hinder their application. To overcome these obstacles, spherical nucleic acids have emerged as versatile tools for nucleic acid delivery in biomedical applications.
View Article and Find Full Text PDFNat Commun
January 2025
Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan.
Genomic variants causing abnormal splicing play important roles in genetic disorders and cancer development. Among them, variants that cause the formation of novel splice-sites (splice-site creating variants, SSCVs) are particularly difficult to identify and often overlooked in genomic studies. Additionally, these SSCVs are frequently considered promising candidates for treatment with splice-switching antisense oligonucleotides (ASOs).
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
Background: Increased APP gene dosage is both necessary and sufficient to result in Down Syndrome Alzheimer’s Disease (DSAD) in humans and AD‐related degenerative changes in mouse models of DS.
Method: We tested antisense oligonucleotides (ASOs) designed to suppress APP expression via RNAseH1‐mediated degradation in the Dp(16)1Yey or Dp(16) model of Down Syndrome. Dp(16) is trisomic for human chromosome 21 syntenic regions on murine chromosome 16, containing 115 genes including APP.
Alzheimers Dement
December 2024
Biogen, Cambridge, MA, USA
Background: Intrathecally (IT) delivered antisense oligonucleotides (ASOs) are promising therapies that can reduce tau pathology in Alzheimer’s Disease (AD). However, current plasma and CSF sampling methods to estimate brain tissue exposure of ASOs are inherently limited, hampering ASO clinical developmental plans. We developed the PET tracer [F]BIO‐687, which binds ASO conjugates (ASO‐Tz) in vivo, allowing us to image ASO distribution in a living brain using “pretargeted” imaging.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Certara, Princeton, NJ, USA
Background: The β‐secretase‐1 inhibitors (BACEi), including verubecestat, were extensively studied in prodromal to moderate AD and demonstrated early cognitive decline (negative effect) at doses achieving >50% inhibition of amyloid production. Questions remain as to whether BACEi may still have utility, if used earlier in disease and at lower levels of inhibition. A mechanistic model of the progression of Alzheimer’s disease was used to predict effects of alternative BACEi therapeutic approaches on disease progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!