Thiol-Ene Modified Amorphous Carbon Substrates: Surface Patterning and Chemically Modified Electrode Preparation.

Langmuir

Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, 125 South Road, Chapel Hill, North Carolina 27599-3290, United States.

Published: October 2016

Amorphous carbon (aC) films are chemically stable under ambient conditions or when interfaced with aqueous solutions, making them a promising material for preparing biosensors and chemically modified electrodes. There are a number of wet chemical methods capable of tailoring the reactivity and wettability of aC films, but few of these chemistries are compatible with photopatterning. Here, we introduce a method to install thiol groups directly onto the surface of aC films. These terminal thiols are compatible with thiol-ene click reactions, which allowed us to rapidly functionalize and pattern the surface of the aC films. We thoroughly characterized the aC films and confirmed the installation of surface-bound thiols does not significantly oxidize the surface or change its topography. We also determined the conditions needed to selectively attach alkene-containing molecules to these films and show the reaction is proceeding through a thiol-mediated reaction. Lastly, we demonstrate the utility of our approach by photopatterning the aC films and preparing ferrocene-modified aC electrodes. The chemistry described here provides a rapid means of fabricating sensors and preparing photoaddressable arrays of (bio)molecules on stable carbon interfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.6b02961DOI Listing

Publication Analysis

Top Keywords

amorphous carbon
8
chemically modified
8
surface films
8
films
7
thiol-ene modified
4
modified amorphous
4
carbon substrates
4
surface
4
substrates surface
4
surface patterning
4

Similar Publications

Mercury Adsorption by Ca-Based Shell-Type Polymers Synthesized by Self-Assembly Mineralization.

Polymers (Basel)

December 2024

State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Adsorption is one of the most promising strategies for heavy metal removal. For Hg(II) removal, mineralized Ca-based shell-type self-assembly beads (MCABs) using alginate as organic polymer template were synthesized in this work. The adsorbent preparation consists of gelation of a Ca-based spherical polymer template (CAB) and rate-controlled self-assembly mineralization in bicarbonate solution with various concentrations.

View Article and Find Full Text PDF

Construction of a Molecular Dynamics Model of N-A-S-H Geopolymer Based on XRD Analysis.

Materials (Basel)

December 2024

College of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China.

A geopolymer is a low-carbon cementitious material, and its condensation process is akin to the formation of inorganic polymers. The crystal phase of synthesized geopolymers was identified using XRD; the scattering peaks of amorphous phases were analyzed, and the zeolite minerals akin to different n(Si)/n(Al) geopolymers were determined. Based on this, a model structure of N-A-S-H geopolymers was established.

View Article and Find Full Text PDF

sp-carbon-linked covalent organic frameworks (spc-COFs) are crystalline porous polymers with repeat organic units linked by sp carbons, and have attracted increasing interest due to their robust skeleton and tunable semiconducting properties. Single-crystalline spc-COFs with well-defined structures can represent an ideal platform for investigating fundamental physics properties and device performance. However, the robust olefin bonds inhibit the reversible-reaction-based crystal self-correction, thus yielding polycrystalline or amorphous polymers.

View Article and Find Full Text PDF

This study explores the integration of nanotechnology and Long Short-Term Memory (LSTM) machine learning algorithms to enhance the understanding and optimization of fuel spray dynamics in compression ignition (CI) engines with varying bowl geometries. The incorporation of nanotechnology, through the addition of nanoparticles to conventional fuels, improves fuel atomization, combustion efficiency, and emission control. Simultaneously, LSTM models are employed to analyze and predict the complex spray behavior under diverse operational and geometric conditions.

View Article and Find Full Text PDF

NiMo-C Coatings Synthesized by Reactive Magnetron Sputtering for Application as a Catalyst for the Hydrogen Evolution Reaction in an Acidic Environment.

ACS Appl Mater Interfaces

January 2025

Institute of Experimental Physics, Faculty of Mathematics Physics and Informatics, University of Gdańsk, Wita Stwosza 57, Gdańsk 80-308, Poland.

This study examines the structure and properties of NiMo-C coatings synthesized via reactive magnetron sputtering of a NiMo alloy target in an argon/acetylene atmosphere. The coating structure evolves with carbon content from nanocrystalline, through amorphous to quasi-amorphous with a nanocolumnar structure. The nanostructure consists of metallic columns perpendicular to the substrate surrounded by an amorphous carbon shell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!