Depolymerization of Fucosylated Chondroitin Sulfate with a Modified Fenton-System and Anticoagulant Activity of the Resulting Fragments.

Mar Drugs

Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China.

Published: September 2016

Fucosylated chondroitin sulfate (fCS) from sea cucumber (fCS-) with a chondroitin sulfate type E (CSE) backbone and 2,4--sulfo fucose branches has shown excellent anticoagulant activity although has also show severe adverse effects. Depolymerization represents an effective method to diminish this polysaccharide's side effects. The present study reports a modified controlled Fenton system for degradation of fCS- and the anticoagulant activity of the resulting fragments. Monosaccharides and nuclear magnetic resonance (NMR) analysis of the resulting fragments indicate that no significant chemical changes in the backbone of fCS- and no loss of sulfate groups take place during depolymerization. A reduction in the molecular weight of fCS- should result in a dramatic decrease in prolonging activated partial thromboplastin time and thrombin time. A decrease in the inhibition of thrombin (FIIa) by antithromin III (AT III) and heparin cofactor II (HCII), and the slight decrease of the inhibition of factor X activity, results in a significant increase of anti-factor Xa (FXa)/anti-FIIa activity ratio. The modified free-radical depolymerization method enables preparation of glycosaminoglycan (GAG) oligosaccharides suitable for investigation of clinical anticoagulant application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5039541PMC
http://dx.doi.org/10.3390/md14090170DOI Listing

Publication Analysis

Top Keywords

chondroitin sulfate
12
anticoagulant activity
12
fucosylated chondroitin
8
activity fragments
8
decrease inhibition
8
activity
5
depolymerization
4
depolymerization fucosylated
4
sulfate
4
sulfate modified
4

Similar Publications

Background: Intracerebral hemorrhage (ICH) causes prominent deposition of extracellular matrix molecules, particularly the chondroitin sulphate proteoglycan (CSPG) member neurocan. In tissue culture, neurocan impedes the properties of oligodendrocytes. Whether therapeutic reduction of neurocan promotes oligodendrogenesis and functional recovery in ICH is unknown.

View Article and Find Full Text PDF

Backgrounds: Osteoarthritis (OA) significantly impacts the elderly, leading to disability and decreased quality of life. While hyaluronic acid (HA) and chondroitin sulfate (CS) are recognized for their therapeutic potential in OA, their effects on extracellular matrix (ECM) degradation are not well understood. This study investigates the impact of HA and CS, individually and combined, on ECM degradation in OA and the underlying mechanisms.

View Article and Find Full Text PDF

Extracellular matrix (ECM) is a network of macromolecules which has two forms - perineuronal nets (PNNs) and a diffuse ECM (dECM) - both influence brain development, synapse formation, neuroplasticity, CNS injury and progression of neurodegenerative diseases. ECM remodeling can influence extrasynaptic transmission, mediated by diffusion of neuroactive substances in the extracellular space (ECS). In this study we analyzed how disrupted PNNs and dECM influence brain diffusibility.

View Article and Find Full Text PDF

Microtia profoundly affects patients' appearance and psychological well-being. Tissue engineering ear cartilage scaffolds have emerged as the most promising solution for ear reconstruction. However, constructing tissue engineering ear cartilage scaffolds requires multiple passaging of chondrocytes, resulting in their dedifferentiation and loss of their special phenotypes and functions.

View Article and Find Full Text PDF

De novo synthesis of hyaluronic acid with tailored molecular weights using a new hyaluronidase SthHL.

Int J Biol Macromol

December 2024

College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China. Electronic address:

Hyaluronic acid (HA) exhibits various biological activities and functions, mainly governed by its molecular weight (M). Traditional HA degradation methods encounter challenges such as environmental pollution and high costs. Thus, developing a safe cell factory with an efficient regulation strategy for one-step production of specific M HA has attracted significant research interest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!