Bacterial resistance is an emerging public health issue that is disseminated worldwide. Silver nanocomposite can be an alternative strategy to avoid Gram-positive and Gram-negative bacteria growth, including multidrug-resistant strains. In the present study a silver nanocomposite was synthesized, using a new green chemistry process, by the addition of silver nitrate (1.10 mol·L) into a fermentative medium of spp. to produce a xanthan gum polymer. Transmission electron microscopy (TEM) was used to evaluate the shape and size of the silver nanoparticles obtained. The silver ions in the nanocomposite were quantified by flame atomic absorption spectrometry (FAAS). The antibacterial activity of the nanomaterial against (ATCC 22652), (ATCC 29282), (ATCC 27853) and (ATCC 25923) was carried out using 500 mg of silver nanocomposite. and multidrug-resistant strains, isolated from hospitalized patients were also included in the study. The biosynthesized silver nanocomposite showed spherical nanoparticles with sizes smaller than 10 nm; 1 g of nanocomposite contained 49.24 µg of silver. Multidrug-resistant strains of and , and the other Gram-positive and Gram-negative bacteria tested, were sensitive to the silver nanocomposite (10-12.9 mm of inhibition zone). The biosynthesized silver nanocomposite seems to be a promising antibacterial agent for different applications, namely biomedical devices or topical wound coatings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274225 | PMC |
http://dx.doi.org/10.3390/molecules21091255 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur 768018 Odisha, India. Electronic address:
Sensing of amino acid serves as the frontier research area for early diagnosis and monitoring various diseases. Among various amino acids, the sensing of L-Cysteine is much important for detection of human diseases like neurotoxic effect and coronary heart disease which arises due to excess of L-Cysteine. To address this, we propose a very simple method of L-Cys sensing via fluorescence "TURN ON" mechanism involving silver centred Rhodamine B nanogranules (AgNPs/RhB) stabilized via electrostatic interaction.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemistry, Selcuk University, Konya 42130, Turkey.
The montmorillonite@iron oxide@silver (MMT@FeO@Ag) nanocomposite, which is recyclable and exhibits high catalytic activity, was evaluated for the degradation of methyl yellow (MY), a carcinogenic azo dye. For this purpose, MMT@FeO was first synthesized via the coprecipitation method and then Ag was doped to MMT@FeO via the chemical reduction method. MMT, MMT@FeO, and MMT@FeO@Ag were characterized by various techniques including scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, vibrating sample magnetometer, and thermal gravimetric analysis.
View Article and Find Full Text PDFRSC Adv
January 2025
School of Material Science and Engineering, Nanjing Tech University P. R China.
Water pollution, oxidative stress and the emergence of multidrug-resistant bacterial strains are significant global threats that require urgent attention to protect human health. Nanocomposites that combine multiple metal oxides with carbon-based materials have garnered significant attention due to their synergistic physicochemical properties and versatile applications in both environmental and biomedical fields. In this context, the present study was aimed at synthesizing a ternary metal-oxide nanocomposite consisting of silver oxide, copper oxide, and zinc oxide (ACZ-NC), along with a multi-walled carbon nanotubes modified ternary metal-oxide nanocomposite (MWCNTs@ACZ-NC).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, PIEAS, P. O. Nilore, 45650 Islamabad, Pakistan.
The growing interest in plant-derived compounds and synthesis of metallopolymer nanocomposites (MPNCs) especially silver chitosan nanocomposites (AgCS-NCs) emerges as a useful platform to encapsulate and deliver plant-based anticancer drugs. This work presents the synthesis of AgCS-NCs by using Moringa oleifera aqueous leaf extract (MOAE) and the effect of concentration of MOAE on physicochemical properties of AgCS-NCs followed by its anticancer effect on MCF-7 cell line. The results of UV-visible spectroscopy (UV-Vis) and Scanning electron microscopy (SEM) showed successful formation of AgCS-NCs.
View Article and Find Full Text PDFOdontology
January 2025
Oral Biology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.
Natural bone is a self-regenerating nanocomposite made of proteins and minerals. Such self-regenerative capacity can be negatively affected by certain diseases involving the bone or its surrounding tissues. Our study assesses the ability of bone grafting material to regenerate bone in animals who have artificially created critical-sized defects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!