The Bifibobacterium longum subsp. longum 35624™ strain (formerly named Bifidobacterium longum subsp. infantis) is a well described probiotic with clinical efficacy in Irritable Bowel Syndrome clinical trials and induces immunoregulatory effects in mice and in humans. This paper presents (a) the genome sequence of the organism allowing the assignment to its correct subspeciation longum; (b) a comparative genome assessment with other B. longum strains and (c) the molecular structure of the 35624 exopolysaccharide (EPS624). Comparative genome analysis of the 35624 strain with other B. longum strains determined that the sub-speciation of the strain is longum and revealed the presence of a 35624-specific gene cluster, predicted to encode the biosynthetic machinery for EPS624. Following isolation and acid treatment of the EPS, its chemical structure was determined using gas and liquid chromatography for sugar constituent and linkage analysis, electrospray and matrix assisted laser desorption ionization mass spectrometry for sequencing and NMR. The EPS consists of a branched hexasaccharide repeating unit containing two galactose and two glucose moieties, galacturonic acid and the unusual sugar 6-deoxy-L-talose. These data demonstrate that the B. longum 35624 strain has specific genetic features, one of which leads to the generation of a characteristic exopolysaccharide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5033381PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0162983PLOS

Publication Analysis

Top Keywords

longum subsp
12
longum
10
genome analysis
8
bifidobacterium longum
8
subsp longum
8
longum 35624™
8
comparative genome
8
longum strains
8
35624 strain
8
strain longum
8

Similar Publications

A novel selective medium for isolation of Limosilactobacillus reuteri from dietary supplements.

J Food Drug Anal

December 2024

Division of Research and Analysis, Food and Drug Administration, Ministry of Health and Welfare, Taipei, Taiwan, R.O.C.

Limosilactobacillus reuteri is a probiotic bacterium known for its numerous beneficial effects on human health and is commonly utilized in various dietary supplements. Previously, we encountered difficulties in isolating L. reuteri from retail dietary supplements containing complex probiotic compositions by using non-selective media such as de Man, Rogosa, and Sharpe (MRS) agar.

View Article and Find Full Text PDF

Allergen immunotherapy (AIT) is currently the most effective immunologic form of treatment for patients with atopic allergic diseases commonly used by allergist/immunologists to reduce allergic symptoms by gradually desensitizing the immune system to specific allergens. Currently, the primary mechanism of AIT emphasizes the crucial role of immune regulation, which involves a shift from a T-helper type 2 (Th2) cell response, which promotes allergy, to a T-regulatory (Treg) cell population, which inhibits the allergic inflammatory response through the production of immunosuppressive cytokines interleukin 10 and transforming growth factor β, which play pivotal roles in suppressing the allergic reaction. In a series of previous in vitro and in vivo experiments, we have demonstrated the capacity of synthetic methylated cytosine-phosphate-guanine (CpG) oligodeoxynucleotide (ODN) moieties as well as methylated genomic DNA ODN motifs from Bifidobacterium longum subspecies infantis to activate Treg cell differentiation in contrast to the unmethylated ODN moiety, which promotes proinflammatory responses driven by Th17-mediated responses.

View Article and Find Full Text PDF

Ulcerative colitis (UC) is an inflammatory bowel disease marked by gut inflammation and microbial dysbiosis. Exopolysaccharides (EPS) from probiotic bacteria have been shown to regulate microbial composition and metabolism, but their role in promoting probiotic growth and alleviating inflammation in UC remains unclear. Here, we investigate BLEPS-1, a novel EPS derived from Bifidobacterium longum subsp.

View Article and Find Full Text PDF

Allergic Rhinitis (AR) is an atopic disease affecting the upper airways of predisposed subjects exposed to aeroallergens. This study evaluates the effects of a mix of specific probiotics ( PBS066, LRH020, BB077, and subsp. BLG240) on symptoms and fecal microbiota modulation in subjects with AR.

View Article and Find Full Text PDF

The Effect of the Combination of Two Postbiotics on Anxiety-like Behavior in Animal Models.

Cells

December 2024

Cell Biology Area, Molecular Biology Department, Campus de Vegazana s/n, Universidad de León, 24071 León, Spain.

With increasing evidence showing the connections between the microbiome, neurophysiology, and behavior, our research endeavors to investigate whether the consumption of a combination of two postbiotics with antioxidant effects can affect behavior regulation in model species. Here, we worked with a combination (1:1 ratio) of heat-treated subsp. ES1 (CECT7347) and BPL15 (CECT8361) as a dietary supplement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!