Poly(ADP-ribose) polymerase 1 (PARP-1) is reported to be involved in DNA repair and is now recognized as a key regulator in carcinogenesis. However, the potential role and the molecular mechanism underlying the effect of PARP-1 on osteosarcoma (OS) cells have not been elucidated. In this study, the results showed that knockdown of PARP-1 resulted in decreased cell proliferation, increased cell apoptosis, and G0/G1 phase arrest in U2OS cells. In addition, increased expression of active caspase 3 and Bax, but reduced Bcl-2, cyclin D1, and phosphorylated extracellular signal regulated kinase 1/2 (pERK1/2) were observed in PARP-1 knockdown in U2OS cells. Moreover, knockdown of PARP-1 correlated with elevated chemosensitivity of U2OS cells to cisplatin through inactivation of the ERK1/2 signaling pathway. In conclusion, our findings demonstrated that PARP-1 plays an important role in regulating OS growth, combining PARP-1 gene therapy with traditional chemotherapy, and may serve as a promising approach to OS therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7838669PMC
http://dx.doi.org/10.3727/096504016X14666990347554DOI Listing

Publication Analysis

Top Keywords

u2os cells
16
knockdown parp-1
12
parp-1
7
cells
5
knockdown
4
parp-1 inhibits
4
inhibits proliferation
4
proliferation erk
4
erk signals
4
signals increasing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!