Tephra layers in marine sediment cores from scientific ocean drilling largely record high-magnitude silicic explosive eruptions in the Japan arc for up to the last 20 million years. Analysis of the thickness variation with distance of 180 tephra layers from a global data set suggests that the majority of the visible tephra layers used in this study are the products of caldera-forming eruptions with magnitude (M) > 6, considering their distances at the respective drilling sites to their likely volcanic sources. Frequency of visible tephra layers in cores indicates a marked increase in rates of large magnitude explosive eruptions at ∼8 Ma, 6-4 Ma, and further increase after ∼2 Ma. These changes are attributed to major changes in tectonic plate interactions. Lower rates of large magnitude explosive volcanism in the Miocene are related to a strike-slip-dominated boundary (and temporary cessation or deceleration of subduction) between the Philippine Sea Plate and southwest Japan, combined with the possibility that much of the arc in northern Japan was submerged beneath sea level partly due to previous tectonic extension of northern Honshu related to formation of the Sea of Japan. Changes in plate motions and subduction dynamics during the ∼8 Ma to present period led to (1) increased arc-normal subduction in southwest Japan (and resumption of arc volcanism) and (2) shift from extension to compression of the upper plate in northeast Japan, leading to uplift, crustal thickening and favorable conditions for accumulation of the large volumes of silicic magma needed for explosive caldera-forming eruptions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5012118 | PMC |
http://dx.doi.org/10.1002/2016GC006362 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Archaeology & Palaeoecology, School of Natural and Built Environment, Queen's University, Belfast BT9 3AZ, United Kingdom.
Polar ice cores and historical records evidence a large-magnitude volcanic eruption in 1831 CE. This event was estimated to have injected ~13 Tg of sulfur (S) into the stratosphere which produced various atmospheric optical phenomena and led to Northern Hemisphere climate cooling of ~1 °C. The source of this volcanic event remains enigmatic, though one hypothesis has linked it to a modest phreatomagmatic eruption of Ferdinandea in the Strait of Sicily, which may have emitted additional S through magma-crust interactions with evaporite rocks.
View Article and Find Full Text PDFSpectral gamma ray borehole logging data can yield insights into the physical properties of lake sediments, serving as a valuable proxy for assessing climate and environmental changes. The presence of tephra layers resulting from volcanic ash deposition is not related to climate and environmental conditions. As a result, these layers pose challenges when attempting to analyze paleoclimate and environmental time series.
View Article and Find Full Text PDFPathogens
July 2024
Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), 38200 San Cristóbal de La Laguna, Spain.
The Tajogaite Volcano erupted on the western slope of the Cumbre Vieja mountain range on La Palma Island in the Canary Islands, Spain, in 2021. As one of the multiple consequences of this eruption, a layer of tephra was deposited, to a variable extent, over a large part of the island. Tephra deposits affect all aspects of vegetation recovery, the water cycle, and the long-term availability of volcanic nutrients.
View Article and Find Full Text PDFSci Rep
June 2024
Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, UR Preistoria e Antropologia, Università di Siena, Via Laterina 8, 53100, Siena, Italy.
The Aurignacian is the first European technocomplex assigned to Homo sapiens recognized across a wide geographic extent. Although archaeologists have identified marked chrono-cultural shifts within the Aurignacian mostly by examining the techno-typological variations of stone and osseous tools, unraveling the underlying processes driving these changes remains a significant scientific challenge. Scholars have, for instance, hypothesized that the Campanian Ignimbrite (CI) super-eruption and the climatic deterioration associated with the onset of Heinrich Event 4 had a substantial impact on European foraging groups.
View Article and Find Full Text PDFSci Rep
May 2024
Section 'Climate Dynamics and Landscape Evolution', GFZ German Research Centre for Geosciences, Potsdam, Germany.
Robust chronologies and time equivalent tephra markers are essential to better understand spatial palaeoenvironmental response to past abrupt climatic changes. Identification of well-dated and widely dispersed volcanic ash by tephra and cryptotephra (microscopic volcanic ash) provides time synchronous tie-points and strongly reduces chronological uncertainties. Here, we present the major, minor and trace element analyses of cryptotephra shards in the Dead Sea Deep Drilling sedimentary record (DSDDP 5017-1A) matching the Campanian Ignimbrite (CI).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!