The method of determination of cholesterol-7 alpha-monooxygenase activity in vivo which has a number of advantages over the existing ones is offered. [3H]cholesterin was injected into rats intravenously in the form of albumin-stabilized emulsion. In 2--4 h and then every day 3H2O radioactivity of one of the cholesterin enzymatic hydroxylation products in microsomal liver apparatus was estimated in animals' urine. The dynamics of 3H2O secretion during 7 days and dependence of the urine radioactivity upon the given radionuclide dose are shown.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cholesterol-7 alpha-monooxygenase
8
alpha-monooxygenase activity
8
activity vivo
8
[determination liver
4
liver cholesterol-7
4
vivo experiment]
4
experiment] method
4
method determination
4
determination cholesterol-7
4
vivo number
4

Similar Publications

In addition to being linked to an excess of lipid accumulation in the liver, being overweight or obese can also result in disorders of lipid metabolism. There is limited understanding regarding whether different levels of protein intake within an energy-restricted diet affect liver lipid metabolism in overweight and obese rats and whether these effects differ by gender, despite the fact that both high protein intake and calorie restriction can improve intrahepatic lipid. The purpose of this study is to explore the effects and mechanisms of different protein intakes within a calorie-restricted diet on liver lipid metabolism, and to investigate whether these effects exhibit gender differences.

View Article and Find Full Text PDF

Glycyrrhiza uralensis Fisch. Attenuates Dioscorea bulbifera L.-induced liver injury by regulating the FXR/Nrf2-BAs-related proteins and intestinal microbiota.

J Ethnopharmacol

January 2025

Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, 712046, People's Republic of China. Electronic address:

Ethnopharmacological Relevance: Dioscorea bulbifera L. (DBL) was a traditional Chinese medicine commonly used to treat goitre and cancer. Nevertheless, its clinical application may lead to liver injury.

View Article and Find Full Text PDF

Maternal high-fat diet orchestrates offspring hepatic cholesterol metabolism via MEF2A hypermethylation-mediated CYP7A1 suppression.

Cell Mol Biol Lett

December 2024

Department of Endocrinology, Peking University First Hospital, No. 8 Xishiku Ave, Xicheng, Beijing, 100034, People's Republic of China.

Background: Maternal overnutrition, prevalent among women of childbearing age, significantly impacts offspring health throughout their lifetime. While DNA methylation of metabolic-related genes mediates the transmission of detrimental effects from maternal high-fat diet (HFD), its role in programming hepatic cholesterol metabolism in offspring, particularly during weaning, remains elusive.

Methods: Female C57BL/6 J mice were administered a HFD or control diet, before and during, gestation and lactation.

View Article and Find Full Text PDF

The mechanisms underlying the ameliorative effects of polyunsaturated fatty acids (PUFAs) on metabolic disorders induced by a high-fat diet (HFD) remain poorly unclear. In this study, we investigated the anti-hyperlipidemic effects of Trichosanthes kirilowii Maxim. (T.

View Article and Find Full Text PDF

Branched-chain amino acids promote hepatic Cyp7a1 expression and bile acid synthesis via suppressing FGF21-ERK pathway.

Acta Pharmacol Sin

November 2024

NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.

Branched-chain amino acids (BCAAs) including leucine, isoleucine and valine have been linked with metabolic and cardiovascular diseases. BCAAs homeostasis is tightly controlled by their catabolic pathway. BCKA dehydrogenase (BCKD) complex is the rate-limiting step for BCAA catabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!