Fluid motion and pressure fields induced by vibrating spheres are frequently used to investigate the function of biological mechanosensory systems and artificial sensors. The calibration of the sphere motion amplitude (displacement, velocity, acceleration), time course and vibration direction often demands expensive equipment. To mitigate this requirement, we have developed a high-quality, low-cost device that we term a 'Smart Mechanical Dipole'. It provides real-time measurement of sphere acceleration along three axes and can be used to obtain an accurate stimulation trace. We applied digital filtering to equalize the frequency response of the vibrating sphere, which also reduced unwanted amplitude and frequency changes in the hydrodynamic signal. In addition, we show that the angular orientation of the rod to which the sphere was attached, i.e. axial versus transverse, but not the immersion depth of the sphere affected sphere vibration behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.143388 | DOI Listing |
Int J Ophthalmol
January 2025
Department of Ophthalmology and Optometry, Eye & ENT Hospital of Fudan University, Shanghai 200031, China.
Aim: To investigate the effect of 0.01% low-concentration atropine (LA) on quantitative contrast sensitivity function (qCSF) in children with myopia.
Methods: This paired case-control study included 90 eyes of 58 children who were sex-, age-, and refraction-matched and equally divided into two groups: the 0.
Environ Sci Process Impacts
January 2025
Eberhard Karls University of Tübingen, Department of Geosciences, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany.
Concentrations of pollutants like pharmaceuticals in soils typically decrease over time, though it often remains unclear whether this dissipation is caused by the transformation of the pollutant or a decreasing extractability. We developed a mathematical model that (1) explores the plausibility of different dissipation pathways, and (2) allows the quantification of concentration differences between aqueous soil extracts and soil solution. The model considers soil particles as uniform spheres, kinetic sorption towards an equilibrium (Freundlich model), and two dissipation pathways, irreversible transformation and mineralization (following 1 order kinetics) as well as the formation of non-extractable residues intraparticle diffusion.
View Article and Find Full Text PDFACS ES T Water
January 2025
School of Earth and Environmental Sciences, Queens College, City University of New York, Queens, New York 11367, United States.
Scaling minerals, such as barite, can cause detrimental consequences for oil/gas pipelines and water systems, but their formation can be inhibited by organic chelators such as ethylenediaminetetraacetic acid (EDTA). Here, we resolve how EDTA affects sorption and desorption of Pb at the barite (001) surface using a combination of X-ray scattering and microscopy measurements. In the presence of EDTA, Pb incorporated in the topmost part of the barite surface and adsorbed as inner-sphere complexes on the surface.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112, United States.
Slip flow, a fluid flow enhanced in comparison to that calculated using continuum equations, has been reported for many nanopores, mostly those with hydrophobic surfaces. We investigated the flow of water, hexane, and methanol through hydrophilic nanopores in silica colloidal crystals. Three silica sphere sizes were used to prepare the crystals: 150 ± 30, 500 ± 40, and 1500 ± 100 nm.
View Article and Find Full Text PDFInt J Pharm
January 2025
HUN-REN Centre for Energy Research, Konkoly Thege M. út, 29-33, 1121 Budapest, Hungary. Electronic address:
In the majority of aerosol drug deposition modelling efforts, the particles are approximated by regular spheres. However, microscope images acquired after drug formulation available in the open literature suggest that their shape is not regular in most of the cases. This work aimed to combine experimental measurements and numerical simulations to reveal the shape factors of the particles of commercialized aerosol drugs and the effect of non-sphericity on the lung deposition distribution of these drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!