The role of stem cells in benign tumors.

Tumour Biol

Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, People's Republic of China.

Published: December 2016

As stem cells contribute to the development and homeostasis of normal adult tissues, malfunction of stem cells in self-renewal and differentiation has been associated with tumorigenesis. A growing number of evidences indicating that tumor initiating cells play a crucial role, not only in malignancies, but also in generation and development of benign tumors. Here we offer an overview of the identification and functional characterization of benign tumor initiating cells in several tissues and organs, which typically show capacities of uncontrolled self-renewal to fuel the tumor growth and abnormal differentiation to give rise to tumor heterogeneity. They may originate from alteration of normal stem cells, which confer the benign tumor initiating cells with different repertoire of "stemness". The plastic functions of benign tumor initiating cells are determined by niche regulation mediated via several signaling and epigenetic cues. Therefore, targeting stem cell function represents an important strategy for understanding the biology and management of benign tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13277-016-5370-xDOI Listing

Publication Analysis

Top Keywords

stem cells
16
tumor initiating
16
initiating cells
16
benign tumors
12
benign tumor
12
cells
8
benign
6
tumor
6
role stem
4
cells benign
4

Similar Publications

Objective: This study aims to investigate and analyze the differentially expressed genes (DEGs) in CD34 + hematopoietic stem cells (HSCs) from patients with myelodysplastic syndromes (MDS) through bioinformatics analysis, with the ultimate goal of uncovering the potential molecular mechanisms underlying pathogenesis of MDS. The findings of this study are expected to provide novel insights into clinical treatment strategies for MDS.

Methods: Initially, we downloaded three datasets, GSE81173, GSE4619, and GSE58831, from the public Gene Expression Omnibus (GEO) database as our training sets, and selected the GSE19429 dataset as the validation set.

View Article and Find Full Text PDF

iPSCs engrafted in allogeneic hosts without immunosuppression induce donor-specific tolerance to secondary allografts.

Proc Natl Acad Sci U S A

March 2025

Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido 060-0815, Japan.

Currently, most cell or tissue transplantations using induced pluripotent stem cells (iPSCs) are anticipated to involve allogeneic iPSCs. However, the immunological properties of iPSCs in an allogeneic setting are not well understood. We previously established a mouse transplantation model of MHC-compatible/minor antigen-mismatched combinations, assuming a hypoimmunogenic iPSC-setting.

View Article and Find Full Text PDF

Protocol for generating human cerebral organoids from two-dimensional cultures of pluripotent stem cells bypassing embryoid body aggregation.

STAR Protoc

March 2025

Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid 28220, Spain. Electronic address:

Human cerebral organoids (hCOs) provide an excellent model for the study of human brain development and disease. Here, we present a protocol to obtain hCOs directly from two-dimensional (2D) pluripotent stem cell (PSC) cultures, avoiding cell dissociation and posterior embryoid body (EB) aggregation. We describe steps for subjecting 2D cultures to a neural fate and subsequently developing hCOs.

View Article and Find Full Text PDF

Plasmacytoid dendritic cells (pDCs) play a pivotal role in immune responses, particularly against viral infections. pDCs exhibit diverse functions, including interferon production, cytokine secretion, and antigen presentation. Here, we investigate the antigen cross-presentation capacity of pDCs and their role in CD8 T cell activation.

View Article and Find Full Text PDF

Offspring exposed to metformin treatment for gestational diabetes mellitus (GDM) experience altered growth patterns that increase the risk for developing cardiometabolic diseases later in life. The adaptive cellular mechanisms underlying these patterns remain unclear. Therefore, the objective of this study was to determine if chronic metformin exposure associated with GDM treatment elicits infant cellular metabolic adaptations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!