Backround: In vivo corneal confocal microscopy allows the examination of each layer of the cornea in detail and the identification of pathological changes at the cellular level. The purpose of this study was to identify the possible effects of a three-month treatment with autologous serum eye-drops in different corneal layers of patients with severe dry eye disease using corneal confocal microscopy.

Methods: Twenty-six patients with dry eye disease were included in the study. Corneal fluorescein staining was performed. The corneas of the right eyes were examined using in vivo corneal confocal microscopy before and after a three-month treatment with autologous serum drops. The densities of superficial and basal epithelial cells, Langerhans cells, the keratocytes and activated keratocytes, the density of endothelial cells and the status of the sub-basal nerve plexus fibres were evaluated.

Results: A significant decrease in corneal fluorescein staining was found after the three-month autologous serum treatment (p = 0.0006). The basal epithelial cell density decreased significantly (p = 0.001), while the density of superficial epithelial cells did not change significantly (p = 0.473) nor did the number of Langerhans cells or activated keratocytes (p = 0.223; p = 0.307, respectively). There were no differences in the other corneal cell layers or in the status of the nerve fibres.

Conclusions: The results demonstrate the ability of corneal confocal microscopy to evaluate an improvement in the basal epithelial cell layer of the cornea after autologous serum treatment in patients with dry eye disease. More studies with longer follow-up periods are needed to elucidate the suitability of corneal confocal microscopy to follow the effect of autologous serum treatment on nerve fibres or other corneal layers in dry eye disease patients.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cxo.12455DOI Listing

Publication Analysis

Top Keywords

corneal confocal
24
autologous serum
24
confocal microscopy
20
dry eye
20
serum treatment
16
eye disease
16
corneal
12
corneal layers
12
basal epithelial
12
layers dry
8

Similar Publications

Biochemical components of corneal stroma: a study on myopia classification based on Raman spectroscopy and deep learning methods.

Biomed Opt Express

January 2025

Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China.

The study aimed to identify differences in the biochemical composition of corneal stroma lenses across varying degrees of myopia using Raman spectrum characteristics. Corneal stroma lens samples from 38 patients who underwent small incision lens extraction (SMILE) surgery, were categorized into low (n = 9, spherical power -3.00D), moderate (n = 23, spherical power < -3.

View Article and Find Full Text PDF

Abnormal corneal nerve function and associated disease is a significant public health concern. It is associated with prevalent ocular surface diseases, including dry eye disease. Corneal nerve dysfunction is also a common side effect of refractive surgeries, as well as a symptom of diseases that cause peripheral neuropathies.

View Article and Find Full Text PDF

Purpose: To assess the impact of autologous serum (AS) tears at a 50% concentration on the ocular surface of patients with refractory dry eye disease (DED) because of Sjogren syndrome.

Methods: Twenty eyes of ten patients with severe immune-mediated DED were contralaterally randomized to receive either AS tears 50% or artificial tears between June 2021 and May 2023. Changes in tear stability, ocular surface staining, and in the morphology of the corneal sub-basal nerves were evaluated before treatment and at 1, 2, and 3 months after treatment using objective tests for DED and confocal microscopy.

View Article and Find Full Text PDF

Small Fibre Pathology in Fibromyalgia: A review.

Pain Ther

January 2025

Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, Clinical Sciences Centre, University Hospital Aintree, University of Liverpool and Liverpool University Hospital NHS Foundation Trust, Liverpool, L9 7AL, UK.

Fibromyalgia syndrome (FMS) presents a complex and challenging disorder in both the diagnosis and treatment, with emerging evidence suggesting a role of small fibre pathology (SFP) in its pathophysiology. The significance of the role of SFP in FMS remains unclear; however, recent evidence suggests degeneration and dysfunction of the peripheral nervous system, particularly small unmyelinated fibres, which may influence pathophysiology and underlying phenotype. Both skin biopsy and corneal confocal microscopy (CCM) have consistently demonstrated that ~ 50% of people with FMS have SFP.

View Article and Find Full Text PDF

Significance: In an aging population, the number of people living with neurodegenerative disease is projected to increase. It is vital to develop reliable, noninvasive biomarkers to detect disease onset and monitor progression, and there is a growing body of research into the ocular surface as a potential source of such biomarkers.

Background: This article reviews the potential of in vivo corneal confocal microscopy and tear fluid analysis as tools for biomarker development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!