Redox Non-Innocent Behavior of a Terminal Iridium Hydrazido(2-) Triple Bond.

Angew Chem Int Ed Engl

Department of Chemistry, University of Minnesota-Twin Cities, 207 Pleasant St SE, Minneapolis, MN, 55455, USA.

Published: October 2016

The synthesis of the first terminal Group 9 hydrazido(2-) complex, Cp*IrN(TMP) (6) (TMP=2,2,6,6-tetramethylpiperidine) is reported. Electronic structure and X-ray diffraction analysis indicate that this complex contains an Ir-N triple bond, similar to Bergman's seminal Cp*Ir(N Bu) imido complex. However, in sharp contrast to Bergman's imido, 6 displays remarkable redox non-innocent reactivity owing to the presence of the N lone pair. Treatment of 6 with MeI results in electron transfer from N to Ir prior to oxidative addition of MeI to the iridium center. This behavior opens the possibility of carrying out facile oxidative reactions at a formally Ir metal center through a hydrazido(2-)/isodiazene valence tautomerization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5392362PMC
http://dx.doi.org/10.1002/anie.201607648DOI Listing

Publication Analysis

Top Keywords

redox non-innocent
8
triple bond
8
non-innocent behavior
4
behavior terminal
4
terminal iridium
4
iridium hydrazido2-
4
hydrazido2- triple
4
bond synthesis
4
synthesis terminal
4
terminal group
4

Similar Publications

A series of Ni complexes bearing a redox and acid-base noninnocent tetraamido macrocyclic ligand, H-(TAML-4) {H-(TAML-4) = 15,15-dimethyl-5,8,13,17-tetrahydro-5,8,13,17-tetraaza-dibenzo[]cyclotridecene-6,7,14,16-tetraone}, with formal oxidation states of Ni, Ni, and Ni were synthesized and characterized structurally and spectroscopically. The X-ray crystallographic analysis of the Ni complexes revealed a square planar geometry, and the [Ni(TAML-4)] complex with the formal oxidation state of Ni was characterized to be [Ni(TAML-4)] with the oxidation state of the Ni ion and the one-electron oxidized TAML-4 ligand, TAML-4. The Ni oxidation state and the TAML-4 radical cation ligand, TAML-4, were supported by X-ray absorption spectroscopy and density functional theory calculations.

View Article and Find Full Text PDF

Developing high-activity and long-term stable electrocatalysts for electrochemical CO2 reduction reaction (eCO2RR) to valuable products is still a challenge. An in-depth understanding of reaction mechanisms and the structure-function relationship is required for the development of an advanced catalytic eCO2RR system. Herein, a coordination polymer of indium(III) and benzenehexathiol (BHT) was developed as an electrocatalyst (In-BHT) for eCO2RR to HCOO-, which displayed an outstanding catalytic performance over the entire pH range.

View Article and Find Full Text PDF

Fulfilment of energy demand by utilizing renewable energy sources that do not contribute to the production of greenhouse gases is a step forward in mitigating global warming. However, with the energy sources being intermittent in nature, renewable energy needs to be stored effectively on a grid scale. In this context, the development of redox-flow batteries has emerged as a promising technology where charging and discharging processes are accomplished by the redox shuttling of the electrolytes, namely anolytes and catholytes.

View Article and Find Full Text PDF

A pronounced nucleophilicity in combination with a distinct redox non-innocence is a unique feature of a coordinated ligand, which in the current case, leads to unprecedented carbon-centered reactivity patterns: A carbodiphosphorane-based (CDP) pincer-type rhodium complex allows to cleave two C-Cl-bonds of geminal dichlorides via two consecutive S.

View Article and Find Full Text PDF

Enhancing Electrochemical CO Reduction via Redox Non-Innocent Spheres in Copper-Coordinated Covalent Organic Frameworks.

Small

December 2024

State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning, 116024, China.

Significant efforts have been dedicated to the development of highly efficient electrocatalysts for electrochemical CO reduction reactions (eCORR). The outer coordination spheres of catalytic centers may play a pivotal role in the reaction pathway and kinetics for eCORR. Herein, three single copper sites coordinated Aza-fused conjugated organic frameworks (Aza-COFs-Cu) with different outer coordination spheres around Cu sites are designed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!