B cell CLL/lymphoma 11A (BCL11A) is a transcription factor and regulator of hemoglobin switching that has emerged as a promising therapeutic target for sickle cell disease and thalassemia. In the hematopoietic system, BCL11A is required for B lymphopoiesis, yet its role in other hematopoietic cells, especially hematopoietic stem cells (HSCs) remains elusive. The extensive expression of BCL11A in hematopoiesis implicates context-dependent roles, highlighting the importance of fully characterizing its function as part of ongoing efforts for stem cell therapy and regenerative medicine. Here, we demonstrate that BCL11A is indispensable for normal HSC function. Bcl11a deficiency results in HSC defects, typically observed in the aging hematopoietic system. We find that downregulation of cyclin-dependent kinase 6 (Cdk6), and the ensuing cell-cycle delay, correlate with HSC dysfunction. Our studies define a mechanism for BCL11A in regulation of HSC function and have important implications for the design of therapeutic approaches to targeting BCL11A.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5054719 | PMC |
http://dx.doi.org/10.1016/j.celrep.2016.08.064 | DOI Listing |
Biology (Basel)
January 2025
Department of Hematology, the Second Xiangya Hospital, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China.
B-cell lymphoma/leukemia 11A (BCL11A) is a crucial transcriptional regulator, widely recognized for its role in controlling fetal hemoglobin and its potential as a gene therapy target for inherited hemoglobinopathies. Beyond this, recent studies have also highlighted its key role in the maturation and function of immune cells and erythrocytes, mediated through the regulation of various molecules during hematopoietic development. The dysregulation of BCL11A disrupts downstream molecular pathways, contributing to the development of several hematological malignancies, particularly leukemias.
View Article and Find Full Text PDFSAGE Open Med Case Rep
January 2025
Department of Reproductive Medicine, Zhejiang Provincial Hospital of Integrated Traditional Chinese and Western Medicine & Hangzhou Red Cross Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China.
Dias-Logan syndrome, also known as intellectual developmental disorder with persistence of fetal hemoglobin (HbF), or -related intellectual developmental disorder, is an extremely rare neurogenetic disorder characterized by intellectual disability (ID), delayed psychomotor development, variable dysmorphic features, and asymptomatic persistence of fetal hemoglobin. The prevalence and incidence of this condition are currently unknown. We report an 8-year-old Han Chinese male patient with Dias-Logan syndrome who carries a heterozygous pathogenic variant, c.
View Article and Find Full Text PDFHemoglobin
January 2025
Department of Biomedical and Science Therapeutic, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia.
Sabah has the highest prevalence of β-thalassemia in Malaysia, with the Filipino β-deletion as the predominant mutation. Patients with the homozygous Filipino β-deletion exhibit phenotypic heterogeneity due to various genetic modifiers, yet the effects of these modifiers on the clinical phenotype remain poorly understood. This study investigated the effects of the coinheritance of α-thalassemia, I-γ rs7482144, rs766432, and 5'HS4 rs16912979 polymorphisms on the clinical phenotype of homozygous Filipino β-deletion patients in Sabah.
View Article and Find Full Text PDFMol Biotechnol
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
Acta Biochim Biophys Sin (Shanghai)
January 2025
Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
Reactivating the embryonic ζ-globin gene represents a potential therapeutic approach to ameliorate the severe clinical phenotype of α-thalassemia and sickle cell disease. The transcription factor MYB has been extensively proven to be a master regulator of the γ-globin gene, but its role in the regulation of ζ-globin remains incompletely understood. Here, we report a mechanistic study on the derepression of ζ-globin both and .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!