The Role of PIEZO2 in Human Mechanosensation.

N Engl J Med

From the National Center for Complementary and Integrative Health (A.T.C., M.S., M.C., C.L.), the National Institute of Neurological Disorders and Stroke (D.B.-G., S.D., L.H.H., N.B., D.N., A.R.F., C.E.L.P., C.G.B.), and the Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, Clinical Center (K.A., C.Z., C.S.), National Institutes of Health, Bethesda, MD; the Division of Neurology, Children's National Health System, Washington, DC (D.B.-G.); the Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine (A.M.I.), and the Department of Clinical Neurosciences and Department of Pediatrics, Alberta Children's Hospital Research Institute (J.K.M.), University of Calgary, Calgary, Canada; and the Departments of Neurosciences and Pediatrics, School of Medicine, University of California, San Diego, Rady Children's Hospital, San Diego, CA (C.M.G.).

Published: October 2016

Background: The senses of touch and proprioception evoke a range of perceptions and rely on the ability to detect and transduce mechanical force. The molecular and neural mechanisms underlying these sensory functions remain poorly defined. The stretch-gated ion channel PIEZO2 has been shown to be essential for aspects of mechanosensation in model organisms.

Methods: We performed whole-exome sequencing analysis in two patients who had unique neuromuscular and skeletal symptoms, including progressive scoliosis, that did not conform to standard diagnostic classification. In vitro and messenger RNA assays, functional brain imaging, and psychophysical and kinematic tests were used to establish the effect of the genetic variants on protein function and somatosensation.

Results: Each patient carried compound-inactivating variants in PIEZO2, and each had a selective loss of discriminative touch perception but nevertheless responded to specific types of gentle mechanical stimulation on hairy skin. The patients had profoundly decreased proprioception leading to ataxia and dysmetria that were markedly worse in the absence of visual cues. However, they had the ability to perform a range of tasks, such as walking, talking, and writing, that are considered to rely heavily on proprioception.

Conclusions: Our results show that PIEZO2 is a determinant of mechanosensation in humans. (Funded by the National Institutes of Health Intramural Research Program.).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5911918PMC
http://dx.doi.org/10.1056/NEJMoa1602812DOI Listing

Publication Analysis

Top Keywords

role piezo2
4
piezo2 human
4
human mechanosensation
4
mechanosensation background
4
background senses
4
senses touch
4
touch proprioception
4
proprioception evoke
4
evoke range
4
range perceptions
4

Similar Publications

Idiopathic pulmonary fibrosis (IPF) and other progressive fibrotic interstitial lung disease have limited treatment options. Fibroblasts are key effector cells that sense matrix stiffness through conformation changes in mechanically sensitive receptors, leading to activation of downstream profibrotic pathways. Here we investigate the role of Piezo2, a mechanosensitive ion channel, in human and mouse lung fibrosis, and its function in myofibroblast differentiation in primary human lung fibroblasts (HLFs).

View Article and Find Full Text PDF

Mechanical forces such as glomerular hyperfiltration are crucial in the pathogenesis and progression of diabetic kidney disease. Piezo2 is a mechanosensitive cation channel and plays a major role in various biological and pathophysiological phenomena. We previously reported Piezo2 expression in mouse and rat kidneys and its alteration by dehydration and hypertension.

View Article and Find Full Text PDF

Deficiency of Endothelial Impairs Pulmonary Vascular Angiogenesis and Predisposes Pulmonary Hypertension.

Hypertension

January 2025

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, China. (F.W., Z.L., W.L., H.L., H.F., S.L., C.Z., Y.Z., S.M., C.W., Z.Z., W.F., J.Z., Q.Y., M.D., W.K., A.L., J.L., X.L., X.W., N.L., Y.C., K.Y., J.W.).

Background: Mechanosensitive Piezo1 channel plays a key role in pulmonary hypertension (PH). However, the role of Piezo2 in PH remains unclear.

Methods: Endothelial cell (EC)-specific knockout (, Tek-Cre; ) rats and primarily cultured pulmonary microvascular ECs were used to determine the role of Piezo2 in PH.

View Article and Find Full Text PDF

Compared to the well-established functions of sympathetic innervation, the role of sensory afferents in adipose tissues remains less understood. Recent work revealed the anatomical and physiological significance of adipose sensory innervation; however, its molecular underpinning remains unclear. Here, using organ-targeted single-cell RNA sequencing, we identified the mechanoreceptor PIEZO2 as one of the most prevalent receptors in fat-innervating dorsal root ganglia (DRG) neurons.

View Article and Find Full Text PDF
Article Synopsis
  • * Patients with this pain condition show central sensitisation, leading to abnormal sensitivity to pain even without visible inflammation.
  • * The review discusses how changes in neuronal ion channels, such as TRPV1 and NMDA receptors, are linked to the altered nociception in myofascial orofacial pain, reinforcing the idea of nociplastic mechanisms at play.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!