Rutile TiO(011)-2 × 1 Reconstructed Surfaces with Optical Absorption over the Visible Light Spectrum.

ACS Appl Mater Interfaces

Department of Chemistry and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.

Published: October 2016

The stable structures of the reconstructed rutile TiO(011) surface are explored based on an evolutionary method. In addition to the well-known "brookite(001)-like" 2 × 1 reconstruction model, three 2 × 1 reconstruction structures are revealed for the first time, all being more stable in the high Ti-rich condition. Importantly, the predicted TiO-2 × 1 surface model not only is in excellent agreement with the reconstructed metastable surface detected by Tao et al. [Nat. Chem. 3, 296 (2011)] from their STM experiment but also gives a consistent formation mechanism and electronic structures with the measured surface. The computed imaginary part of the dielectric function suggests that the newly predicted reconstructed surfaces are capable of optical absorption over the entire visible light spectrum, thereby offering high potential for photocatalytic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b10718DOI Listing

Publication Analysis

Top Keywords

reconstructed surfaces
8
optical absorption
8
visible light
8
light spectrum
8
rutile tio011-2
4
reconstructed
4
tio011-2 reconstructed
4
surfaces optical
4
absorption visible
4
spectrum stable
4

Similar Publications

Background: Studies have revealed abnormalities of the epiphyseal plate of the distal femur in patients with trochlear dysplasia, but it is unclear whether the epiphyseal plate could be remodeled after surgical correction of patellar dislocation.

Purpose: To investigate whether the morphology of the epiphyseal plate and trochlea could be improved after medial patellar retinaculum plasty in skeletally immature patients and to investigate the correlations between the morphology of the epiphyseal plate and trochlear dysplasia as well as clinical outcomes.

Study Design: Cohort study; Level of evidence, 3.

View Article and Find Full Text PDF

Immunomodulation with M2 macrophage-derived extracellular vesicles for enhanced titanium implant osseointegration under diabetic conditions.

Mater Today Bio

February 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, China.

M2 macrophage-derived extracellular vesicles (M2-EVs) demonstrate the capacity to reduce pro-inflammatory M1 macrophage formation, thereby restoring the M1-M2 macrophage balance and promoting immunoregulation. However, the efficacy of M2-EVs in regulating macrophage polarization and subsequently enhancing osseointegration around titanium (Ti) implants in patients with diabetes mellitus (DM) remains to be elucidated. In this study, Ti implants were coated with polydopamine to facilitate M2-EVs adherence.

View Article and Find Full Text PDF

Management of complex wounds in the pediatric population is a herculean task due to the decreased surface area available for flaps and the added scars from flap reconstruction. Biodegradable temporizing matrix (BTM) has proven useful, particularly in adult burns and complex wounds. Only a few have documented the use of BTM in complex wounds in children.

View Article and Find Full Text PDF

3D printing is an indispensable technology in modern life and is widely used in aerospace, exoskeleton, and architecture. The increasing accuracy requirements of 3D printed objects in these fields require high-precision measurement methods to obtain accurate data. Based on the precision measurement requirements, in this study, a fast multifrequency phase unwrapping method based on 3D printing object appearance acquisition is proposed.

View Article and Find Full Text PDF

This study presents a novel methodology for high-resolution 3D bladder modeling during filling, developed by leveraging improved imaging and computational techniques. Using murine bladder filling data, the methodology generates accurate 3D geometries across time, enabling in-depth mechanical analysis. Comparison with a traditional spherical model revealed similar stress trends, but the 3D model permitted nuanced quantifications, such as localized surface curvature and stress analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!