Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Diabetes develops predominantly in males in experimental models, and extensive evidence suggests that 17β-estradiol (E2) modulates progression of diabetes in humans. We previously developed a severely diabetic transgenic (Tg) mouse model by β-cell-specific overexpression of inducible cAMP early repressor (ICER) and found that male ICER-Tg mice exhibit sustained severe hyperglycemia, but female ICER-Tg mice gradually became normoglycemic with aging. This implies that differences in circulating androgen and E2 levels might influence skeletal muscle glucose uptake and glycemic status. Here we examined whether a decrease of androgen or E2 excess can improve muscle glucose uptake in hyperglycemic male ICER-Tg mice and, conversely, whether a decrease of E2 or androgen excess can elevate blood glucose levels and impair muscle glucose uptake in normoglycemic female ICER-Tg mice. We treated hyperglycemic male ICER-Tg mice with orchiectomy (ORX) or ORX+E2 pellet implantation and normoglycemic female ICER-Tg mice with ovariectomy (OVX) or OVX+5α-DHT pellet implantation to alter the androgen to E2 ratio. ORX+E2 treatment of male ICER-Tg mice caused a rapid drop in blood glucose via both a dramatic increase of β-cells and significantly improved muscle glucose uptake due to the induction of glucose transporter type 4 (GLUT4) expression and translocation of GLUT4 to the cell membrane. In contrast, OVX+5α-DHT-treated female ICER-Tg mice showed an elevation of blood glucose without any decrease of β-cells; instead, they showed decreased muscle glucose uptake due to decreased activation of serine/threonine-specific protein kinase AKT and GLUT4 expression. These findings suggest that androgen (5α-DHT) promotes insulin resistance in females, whereas E2 improves insulin sensitivity in severely diabetic male mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2016-1261 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!