Adsorption competencies of rare earth metal cations in γ-zirconium phosphate were examined by ICP, synchrotron X-ray diffraction (SXRD), and ab initio simulation. The adsorption amounts are around 0.06-0.10 per zirconium phosphate. From the SXRD patterns of the adsorbed samples, the basal spacing estimated by c sin β increased linearly with an increasing ionic radius of rare earth metal cation, though a and b lattice constants show no change. These SXRD patterns can be classified into four groups that have different super lattices. The four superlattices have multiplicities of x131, x241, and x221 for the xabc axis, and the location of the rare earth metal cation in the original unit cell changes depending on the superlattice cell. In the x131 superlattice, Yb and Er occupied the site near the zirconium phosphate layer, though La and Ce in the x221 superlattice remained in the center position between the phosphate sheet. For the ab initio simulation of γ-ZrP with the typical rare earth metal cations (Tb, Eu, Dy, and La), the results of simulation show a similar tendency of the position estimated by SXRD refinements.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.6b02747DOI Listing

Publication Analysis

Top Keywords

rare earth
20
earth metal
20
metal cations
12
initio simulation
8
zirconium phosphate
8
sxrd patterns
8
metal cation
8
rare
5
earth
5
metal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!