Diabetic nephropathy (DN), a common complication associated with type 1 and type 2 diabetes mellitus (DM), characterized by glomerular mesangial expansion, inflammation, accumulation of extracellular matrix (ECM) protein, and hypertrophy, is the major cause of end-stage renal disease (ESRD). Increasing evidence suggested that p21-dependent glomerular and mesangial cell (MC) hypertrophy play key roles in the pathogenesis of DN. Recently, posttranscriptional modifications (PTMs) have uncovered novel molecular mechanisms involved in DN. However, precise regulatory mechanism of histone lysine methylation (HKme) mediating p21 related hypertrophy associated with DN is not clear. We evaluated the roles of HKme and histone methyltransferase (HMT) SET7/9 in p21 gene expression in glomeruli of diabetic rats and in high glucose- (HG-) treated rat mesangial cells (RMCs). p21 gene expression was upregulated in diabetic rats glomeruli; chromatin immunoprecipitation (ChIP) assays showed decreased histone H3-lysine9-dimethylation (H3K9me2) accompanied with enhanced histone H3-lysine4-methylation (H3K4me1/3) and SET7/9 occupancies at the p21 promoter. HG-treated RMCs exhibited increased p21 mRNA, H3K4me level, SET7/9 recruitment, and inverse H3K9me, which were reversed by TGF-β1 antibody. These data uncovered key roles of H3Kme and SET7/9 responsible for p21 gene expression in vivo and in vitro under diabetic conditions and confirmed preventive effect of TGF-β1 antibody on DN.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5019898 | PMC |
http://dx.doi.org/10.1155/2016/3853242 | DOI Listing |
Turk J Med Sci
December 2024
Department of Microbiology, Faculty of Medicine, Ankara University, Ankara, Turkiye.
Background/aim: The p53 protein, a crucial tumor suppressor, governs cell cycle regulation and apoptosis. Similarly, p63, a member of the p53 family, exhibits traits of both tumor suppression and oncogenic behavior through its isoforms. However, the functional impact of ΔNp63β, an isoform of the p63 protein, on human glioma cancer cells like T98G cells remains poorly understood, representing the novelty of this study in the current literature.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Kanagawa, Japan.
To investigate the functional role of S100A4 in advanced colorectal carcinoma (Ad-CRC) and locally advanced rectal carcinoma (LAd-RC) receiving neoadjuvant chemoradiotherapy (NCRT). We analyzed histopathological and immunohistochemical sections from 150 patients with Ad-CRC and 177 LAd-RC patients treated with NCRT. S100A4 knockout (KO) HCT116 cells were also used.
View Article and Find Full Text PDFMicrob Pathog
December 2024
Departamento de Biologia Animal (DBA), Programa de Pós-Graduação em Biologia Animal (PPGBA), Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Minas Gerais, Brazil.
Chronic inflammation, oxidative stress, and DNA damage are observed in schistosomiasis and premature aging. However, the potential of these events to trigger stress-induced premature senescence (SIPS) throughout schistosomiasis progression remains overlooked, especially in response to the first-line pharmacological treatment. Thus, we investigated the relationship between oxidative stress and SIPS sentinel markers in untreated Schistosoma mansoni-infected mice and those receiving praziquantel (Pz)-based reference treatment.
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: Sporadic aortic aneurysm and dissection (AAD) is a critical condition characterised by the progressive loss of vascular smooth muscle cells (VSMCs) and the breakdown of the extracellular matrix. However, the molecular mechanisms responsible for the phenotypic switch and loss of VSMCs in AAD are not fully understood.
Methods And Results: In this study, we employed a discovery-driven, unbiased approach.
Cancer Genomics Proteomics
December 2024
Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan, R.O.C.;
Background/aim: The disruption of cell-cycle control can lead to an imbalance in cell proliferation, often accompanied by genomic instability, which in turn can facilitate carcinogenesis. This study aimed to examine the impact of CDKN1A rs1801270 and rs1059234 polymorphisms on the risk of childhood acute lymphocytic leukemia (ALL) in Taiwan.
Materials And Methods: The genotypes of CDKN1A rs1801270 and rs1059234 in 266 childhood ALL cases and 266 controls were determined using PCR-RFLP techniques.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!