Local and distant trauma after hypervelocity ballistic impact to the pig hind limb.

Springerplus

6th Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042 China ; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China.

Published: September 2016

The development of high-energy weapons could increase the velocity of projectiles to well over 1000 m/s. The nature of the injuries caused by the ballistic impact of projectiles at velocities much faster than 1000 m/s is unclear. This study characterizes the mechanical and biochemical alterations caused by high-speed ballistic impact generated by spherical steel ball to the hind limbs of the pig. That the local and distal injuries caused by hypervelocity ballistic impact to the living body are also identified. It is showed that the severity of the injury was positively correlated with the velocity of the projectile. And 4000 m/s seems to be the critical velocity for the 5.6 mm spherical steel ball, which would cause severe damage to either local or distal organs, as below that speed the projectile penetrated the body while above that speed it caused severe damage to the body. In addition, vaporization prevented the projectile from penetrating the body and the consequent pressure wave seems to be the causal factor for the distant damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5014777PMC
http://dx.doi.org/10.1186/s40064-016-3160-yDOI Listing

Publication Analysis

Top Keywords

ballistic impact
16
hypervelocity ballistic
8
injuries caused
8
spherical steel
8
steel ball
8
local distal
8
severe damage
8
local distant
4
distant trauma
4
trauma hypervelocity
4

Similar Publications

Advanced materials are crucial for enhancing soldier safety through improved personal body armor. In contrast to conventional Kevlar-epoxy composites, this study examines the ballistic performance of a unique ECO-UHMWPE (Ultra-High Molecular Weight Polyethylene) vest. The aim is to achieve a lightweight design with superior impact resistance, addressing limitations of the current armor used by the Ethiopian Defense Force.

View Article and Find Full Text PDF

Quantum Dynamics Simulations of Exciton Polariton Transport.

Nano Lett

January 2025

Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.

Recent experiments have shown that exciton transport can be significantly enhanced through hybridization with confined photonic modes in a cavity. The light-matter hybridization generates exciton-polariton (EP) bands, whose group velocity is significantly larger than the excitons. Dissipative mechanisms that affect the constituent states of EPs, such as exciton-phonon coupling and cavity loss, have been observed to reduce the group velocities in experiments.

View Article and Find Full Text PDF

In shooting incident reconstructions, forensic examiners usually deal with scenes involving short-range trajectories, typically ≤30 m. In situations such as this, a linear trajectory reconstruction model is appropriate. However, a forensic expert can also be asked to estimate a shooter's position by reconstructing a long-range trajectory where the bullet's path becomes arced as a result of gravity and the greater time in flight.

View Article and Find Full Text PDF

Impact Resistance of Layered Aramid Fabric: A Numerical Study on Projectile-Induced Damage.

Polymers (Basel)

December 2024

Faculty of Entrepreneurship, Engineering and Business Management, National University of Science and Technology Politehnica, 060042 Bucharest, Romania.

The aim of this work is to comparatively analyze, using numerical simulation, the impact behavior of aramid fabric. A layered panel was impacted by two projectiles specific to the NIJ protection level HG1. The protection level in this study is based on NIJ Standard 0123.

View Article and Find Full Text PDF

Firearm-related scenarios can be highly complex, involving multiple shooters, firearms, types of ammunition, victims, and various impact zones. Obtaining the maximum amount of information to connect each piece of the puzzle is crucial for resolving these cases. Currently, new tools are being developed in the forensic field that facilitate both fieldwork and laboratory analysis, enabling the estimation of trajectories, identification of shooters, and more.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!