A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Visual saliency models for summarization of diagnostic hysteroscopy videos in healthcare systems. | LitMetric

Visual saliency models for summarization of diagnostic hysteroscopy videos in healthcare systems.

Springerplus

Intelligent Media Laboratory, Department of Digital Contents, College of Electronics and Information Engineering, Sejong University, Seoul, Republic of Korea.

Published: September 2016

In clinical practice, diagnostic hysteroscopy (DH) videos are recorded in full which are stored in long-term video libraries for later inspection of previous diagnosis, research and training, and as an evidence for patients' complaints. However, a limited number of frames are required for actual diagnosis, which can be extracted using video summarization (VS). Unfortunately, the general-purpose VS methods are not much effective for DH videos due to their significant level of similarity in terms of color and texture, unedited contents, and lack of shot boundaries. Therefore, in this paper, we investigate visual saliency models for effective abstraction of DH videos by extracting the diagnostically important frames. The objective of this study is to analyze the performance of various visual saliency models with consideration of domain knowledge and nominate the best saliency model for DH video summarization in healthcare systems. Our experimental results indicate that a hybrid saliency model, comprising of motion, contrast, texture, and curvature saliency, is the more suitable saliency model for summarization of DH videos in terms of extracted keyframes and accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5013008PMC
http://dx.doi.org/10.1186/s40064-016-3171-8DOI Listing

Publication Analysis

Top Keywords

visual saliency
12
saliency models
12
saliency model
12
diagnostic hysteroscopy
8
hysteroscopy videos
8
healthcare systems
8
video summarization
8
saliency
6
videos
5
summarization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!