Targeting Netrin-1 in glioblastoma stem-like cells inhibits growth, invasion, and angiogenesis.

Tumour Biol

Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wang Lang Road, Bangkoknoi, Bangkok, 10700, Thailand.

Published: November 2016

Glioblastoma (GBM) is an aggressive malignant brain tumor that still lacks effective therapy. Glioblastoma stem cells (GBM-SCs) were identified to contribute to aggressive phenotypes and poor clinical outcomes for GBM. Netrin-1, an axon guidance molecule, has been found in several tumors in adults. However, the role of Netrin-1 in GBM-SCs remains largely unknown. In this study, CD133-positive U251 GBM cells were used as a putative GBM-SC population to identify the functions of Netrin-1. Using lentiviral transduction, Netrin-1 miR RNAi vectors were transduced into CD133-positive U251 cells. We demonstrated that cell proliferation and survival were decreased following targeted deletion of Netrin-1. Cell invasion was dramatically diminished in Netrin-1 knockdown GBM-SCs. Moreover, Netrin-1 knockdown GBM-SCs exhibited less proangiogenic activity. In conclusion, Netrin-1 may represent a therapeutic target in glioblastoma.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13277-016-5314-5DOI Listing

Publication Analysis

Top Keywords

netrin-1
8
cd133-positive u251
8
netrin-1 knockdown
8
knockdown gbm-scs
8
targeting netrin-1
4
glioblastoma
4
netrin-1 glioblastoma
4
glioblastoma stem-like
4
cells
4
stem-like cells
4

Similar Publications

Objective: To analyze the relationship and predictive value of Netrin-1 expression and ultrasonic blood flow parameters with the severity of cervical intraepithelial neoplasia (CIN).

Methods: A retrospective analysis was performed on 115 patients diagnosed with CIN and 37 patients with chronic cervicitis, all of whom underwent surgical intervention. The expression levels of Netrin-1 were evaluated through immunohistochemical staining and quantitative fluorescence PCR.

View Article and Find Full Text PDF

Exiting a germinal zone (GZ) initiates a cascade of events that promote neuronal maturation and circuit assembly. Developing neurons and their progenitors must interpret various niche signals-such as morphogens, guidance molecules, extracellular matrix components, and adhesive cues-to navigate this region. How differentiating neurons in mouse brains integrate and adapt to multiple cell-extrinsic niche cues with their cell-intrinsic machinery in exiting a GZ is unknown.

View Article and Find Full Text PDF

Background: Temporal lobe epilepsy (TLE) is the most common form of drug-resistant epilepsy, often associated with hippocampal sclerosis (HS), which involves selective neuronal loss in the Cornu Ammonis subregion 1 CA1 and CA4 regions of the hippocampus. Granule cells show migration and mossy fiber sprouting, though the mechanisms remain unclear. Microglia play a role in neurogenesis and synaptic modulation, suggesting they may contribute to epilepsy.

View Article and Find Full Text PDF

Bafilomycin A1 mitigates subchondral bone degeneration and pain in TMJOA rats.

Int Immunopharmacol

January 2025

Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China. Electronic address:

Background: Pain and disability are primary concerns for temporomandibular joint osteoarthritis (TMJOA) patients, and the efficacy of current treatments remains controversial. Overactive osteoclasts are associated with subchondral bone degeneration and pain in OA. The vacuolar H+-ATPase (V-ATPase) is crucial for differentiation and function in osteoclasts, but its role in TMJOA is not well defined.

View Article and Find Full Text PDF

The regulatory role of the Netrin-1/UNC5H3 pathway in neuronal pyroptosis after stroke.

Int Immunopharmacol

January 2025

Department of Neurosurgery, the Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518000, China; Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518000, China. Electronic address:

Currently, stroke is a disease with high disability and mortality risks and no effective treatment. The pathogenesis and molecular mechanisms of neuronal damage in stroke are highly complex. Pyroptosis participates in neuronal death after stroke.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!