Oxidative stress has been implicated in cardiac hypertrophy and heart failure. Vascular peroxidase 1 (VPO1), a peroxidase in the cardiovascular system, uses the hydrogen peroxide (HO) derived from co-expressed NADPH oxidases (NOX) to produce hypochlorous acid (HOCl) and catalyze peroxidative reactions. Our previous studies showed that VPO1 contributes to the vascular smooth muscle cell proliferation and endothelial dysfunction in spontaneous hypertensive rats (SHRs); however, the role of VPO1 in cardiomyocytes hypertrophy is still uninvestigated. The present study was therefore undertaken to examine the role of VPO1 in the angiotensin II-induced cardiac hypertrophy, and the underlying mechanism by which VPO1 regulates the redox signaling. As compared to WKY rats, the SHRs exhibited increased myocyte cross sectional area, enhanced Nox2 and VPO1 expression level in cardiac tissue, and an increased Ang II level in plasma. In cultured H9c2 cell line, Ang II increased the hypertrophy-related gene (BNP/ANF) expression and the cellular surface area, which was attenuated by knocking down of VPO1 via VPO1 siRNA or pharmacological inhibition of NOX/VPO1 pathway. Moreover, the enhanced hypochlorous acid (HOCl) production and phosphorylation of ERK1/2 was suppressed by VPO1 knockdown. Furthermore, the protective role of VPO1 siRNA transfection on H9c2 cardiomyocytes hypertrophy was abrogated on the HOCl stimulation, and the phosphorylated ERK1/2 expression level was found also upregulated after HOCl stimulation. In conclusion, these results suggest that the Nox2/VPO1/HOCl/ERK1/2 redox signaling pathway was implicated in the pathogenesis of Ang II-induced cardiac hypertrophy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jash.2016.08.002DOI Listing

Publication Analysis

Top Keywords

cardiac hypertrophy
12
role vpo1
12
vpo1
10
vascular peroxidase
8
angiotensin ii-induced
8
hypochlorous acid
8
acid hocl
8
rats shrs
8
cardiomyocytes hypertrophy
8
ii-induced cardiac
8

Similar Publications

Objective: Although left ventricular hypertrophy frequently accompanies end-stage renal disease, heart failure (HF) with reduced ejection fraction (EF) is also observed in a subset of patients. In those patients kidney transplantation (KT) is generally avoided due to an increased risk of mortality in addition to the risks associated with HF. This prospective study was designed to follow patients with HF who were being prepared for KT.

View Article and Find Full Text PDF

Even if rarely detected, right atrial (RA) masses represent a diagnostic challenge due to their heterogeneous presentation. Para-physiological RA structures, such as a prominent Eustachian valve, Chiari's network, and lipomatous atrial hypertrophy, may easily be misinterpreted as pathological RA masses, including thrombi, myxomas, and vegetations. Each pathological mass should always be correlated with adequate clinical, anamnestic, and laboratory data.

View Article and Find Full Text PDF

Chronic exposure to high altitudes causes pathophysiological cardiac changes that are characterized by cardiac dysfunction, cardiac hypertrophy, and decreased energy reserves. However, finding specific pharmacological interventions for these pathophysiological changes is challenging. In this study, we identified tetramethylpyrazine (TMP) as a promising drug candidate for cardiac dysfunction caused by simulated high-altitude exposure.

View Article and Find Full Text PDF

The Role of NT-proBNP Levels in the Diagnosis of Hypertensive Heart Disease.

Diagnostics (Basel)

January 2025

Department of Cardiology, Paphos General Hospital, State Health Organization Services, Paphos 8026, Cyprus.

Hypertension is a major risk factor of various cardiac complications, including hypertensive heart disease (HHD). This condition can lead to a number of structural and functional changes in the heart, such as left ventricular hypertrophy, diastolic dysfunction, and, eventually, systolic dysfunction. In the management of hypertensive heart disease, early diagnosis and appropriate treatment are crucial for preventing the progression to congestive heart failure.

View Article and Find Full Text PDF

Heart failure is a common and deadly disease requiring new treatments. The neuregulin-1/ERBB4 pathway offers cardioprotective benefits, but using recombinant neuregulin-1 as therapy has limitations due to the need for intravenous delivery and lack of receptor specificity. We hypothesize that small-molecule activation of ERBB4 could protect against heart damage and fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!