Pulmonary edema is a common finding in fatal methamphetamine intoxication. However, the underlying mechanism remains poorly understood. This study investigated the molecular pathology of alveolar damage involving pulmonary edema in forensic autopsy cases. Seven candidate reference genes (RPL13A, YWHAZ, GUSB, SDHA, GAPDH, B2M, and ACTB) were evaluated in the lung by the geNorm module in qBase software. RPL13A, YWHAZ, and GUSB were identified as the most stable reference genes. Using these validated reference genes, intrapulmonary mRNA expressions of matrix metalloproteinases (MMPs), intercellular adhesion molecule-1 (ICAM-1), claudin-5 (CLDN-5), and aquaporins (AQPs) were examined. Relative mRNA quantification using TaqMan real-time PCR assay demonstrated higher expressions of all markers except for AQP-5 in fatal METH intoxication cases. These findings suggested alveolar damage and compensatory response in fatal METH intoxication cases. Systematic analysis of gene expressions using real-time qPCR is a useful tool in forensic death investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1556-4029.13199DOI Listing

Publication Analysis

Top Keywords

pulmonary edema
12
reference genes
12
molecular pathology
8
edema forensic
8
forensic autopsy
8
autopsy cases
8
fatal methamphetamine
8
methamphetamine intoxication
8
alveolar damage
8
rpl13a ywhaz
8

Similar Publications

Objective: In the context of acute cardiogenic pulmonary edema (ACPE), a frequently encountered medical emergency associated with high early mortality rates, there is a need to predict short-term outcomes for risk stratification.Our aim was to derive and validate a model, a simple clinical scoring system using baseline vital signs, clinical and presenting characteristics, and readily available laboratory tests, that allows accurate prediction of short-term mortality in individuals experiencing ACPE.

Methods: This retrospective cohort study included 1088 patients with ACPE from six health centers.

View Article and Find Full Text PDF

Tissue remodeling during high-altitude pulmonary edema in rats: Biochemical and histomorphological analysis.

Tissue Cell

January 2025

Department of Human and Animal Physiology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia; Research Institute of Biology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia. Electronic address:

High altitude characterized by the low partial pressure of the oxygen is a life-threatening condition that contributes to the development of acute pulmonary edema and hypoxic lung injury. In this study, we aimed to investigate the contribution of some inflammatory and oxidative stress markers along with antioxidant system enzymes in the pathogenesis of HAPE (high-altitude pulmonary edema) formation. We incorporated the study on 42 male rats to unravel the role of mast cells (MCs) and TNF-α in the lung after the effect of acute hypobaric hypoxia.

View Article and Find Full Text PDF

Importance: Lung ultrasound (LUS) aids in the diagnosis of patients with dyspnea, including those with cardiogenic pulmonary edema, but requires technical proficiency for image acquisition. Previous research has demonstrated the effectiveness of artificial intelligence (AI) in guiding novice users to acquire high-quality cardiac ultrasound images, suggesting its potential for broader use in LUS.

Objective: To evaluate the ability of AI to guide acquisition of diagnostic-quality LUS images by trained health care professionals (THCPs).

View Article and Find Full Text PDF

Anterior cord syndrome is a rare yet critical neurological condition that poses significant challenges in clinical management. We present the case of a 71-year-old male with a medical history of hypertension, uncontrolled type II diabetes mellitus, hypothyroidism, and end-stage renal disease requiring dialysis who presented to the emergency department with complaints of chills, back pain, abdominal pain, and vomiting episodes. Based on the severity of the patient's illness, it was decided that inpatient admission would be best.

View Article and Find Full Text PDF

Key Clinical Message: Although the symptoms of accidental chlorine inhalation are typically mild, severe exposure can result in acute respiratory distress syndrome (ARDS). We present a case of pediatric ARDS due to chlorine exposure in which lung lavage and exogenous surfactant were successful in avoiding more invasive and costly treatments.

Abstract: Chlorine inhalation as a result of swimming pool chlorination accidents is relatively common.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!