The scarcity of corneal tissue to treat deep corneal defects and corneal perforations remains a challenge. Currently, small incision lenticule extraction (SMILE)-derived lenticules appear to be a promising alternative for the treatment of these conditions. However, the thickness and toughness of a single piece of lenticule are limited. To overcome these limitations, we constructed a corneal stromal equivalent with SMILE-derived lenticules and fibrin glue. In vitro cell culture revealed that the corneal stromal equivalent could provide a suitable scaffold for the survival and proliferation of corneal epithelial cells, which formed a continuous pluristratified epithelium with the expression of characteristic markers. Finally, anterior lamellar keratoplasty in rabbits demonstrated that the corneal stromal equivalent with decellularized lenticules and fibrin glue could repair the anterior region of the stroma, leading to re-epithelialization and recovery of both transparency and ultrastructural organization. Corneal neovascularization, graft degradation, and corneal rejection were not observed within 3 months. Taken together, the corneal stromal equivalent with SMILE-derived lenticules and fibrin glue appears to be a safe and effective alternative for the repair of damage to the anterior cornea, which may provide new avenues in the treatment of deep corneal defects or corneal perforations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5030613 | PMC |
http://dx.doi.org/10.1038/srep33848 | DOI Listing |
Cornea
January 2025
Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
Purpose: To describe a case series of patients with 12 fungal keratitis treated with caspofungin 0.5% eye drops.
Methods: In this study, 12 patients diagnosed with fungal keratitis were treated with topical compounded caspofungin 0.
Cornea
January 2025
Department of Ophthalmology, Rothschild Foundation, Paris, France; and.
Purpose: The purpose of this study was to investigate the effect of hypoxia and hypobaric conditions on refraction and central corneal thickness on healthy corneas during an ascent without oxygen supplementation above 7000 m (23 000 ft).
Methods: Twelve multinational mountaineers were included in a prospective observational cohort study during an expedition to the Korzhenevskoi Peak (7105 m). The two patients excluded from the study had a history with keratoconus or were current wearers of rigid contact lenses.
Mater Today Bio
February 2025
Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China.
Diabetic keratopathy (DK), a significant complication of diabetes, often leads to corneal damage and vision impairment. Effective models are essential for studying DK pathogenesis and evaluating potential therapeutic interventions. This study developed a novel biomimetic full-thickness corneal model for the first time, incorporating corneal epithelial cells, stromal cells, endothelial cells, and nerves to simulate DK conditions .
View Article and Find Full Text PDFActa Biomater
January 2025
Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China. Electronic address:
Limbal stem cell deficiency (LSCD) causes vision loss and is often treated by simple corneal epithelial cell transplantation with poor long-term efficiency. Here, we present a biomimetic bilayer limbal implant using digital light processing 3D printing technology with gelatin methacrylate (GelMA) and poly (ethylene glycol) diacrylate (PEGDA) bioinks containing corneal epithelial cells (CECs) and corneal stromal stem cells (CSSCs), which can transplant CECs and improve the limbal niche simultaneously. The GelMA/PEGDA hydrogel possessed robust mechanical properties to support surgical transplantation and had good transparency, suitable swelling and degradation rate as a corneal implant.
View Article and Find Full Text PDFActa Biomater
January 2025
Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA. Electronic address:
Hydrogels composed of collagen, the most abundant protein in the human body, are widely used as scaffolds for tissue engineering due to their ability to support cellular activity. However, collagen hydrogels with encapsulated cells often experience bulk contraction due to cell-generated forces, and conventional strategies to mitigate this undesired deformation often compromise either the fibrillar microstructure or cytocompatibility of the collagen. To support the spreading of encapsulated cells while preserving the structural integrity of the gels, we present an interpenetrating network (IPN) of two distinct collagen networks with different crosslinking mechanisms and microstructures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!