In vitro assembly of Ebola virus nucleocapsid-like complex expressed in E. coli.

Protein Cell

CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.

Published: December 2016

Ebola virus (EBOV) harbors an RNA genome encapsidated by nucleoprotein (NP) along with other viral proteins to form a nucleocapsid complex. Previous Cryo-eletron tomography and biochemical studies have shown the helical structure of EBOV nucleocapsid at nanometer resolution and the first 450 amino-acid of NP (NPΔ451-739) alone is capable of forming a helical nucleocapsid-like complex (NLC). However, the structural basis for NP-NP interaction and the dynamic procedure of the nucleocapsid assembly is yet poorly understood. In this work, we, by using an E. coli expression system, captured a series of images of NPΔ451-739 conformers at different stages of NLC assembly by negative-stain electron microscopy, which allowed us to picture the dynamic procedure of EBOV nucleocapsid assembly. Along with further biochemical studies, we showed the assembly of NLC is salt-sensitive, and also established an indispensible role of RNA in this process. We propose the diverse modes of NLC elongation might be the key determinants shaping the plasticity of EBOV virions. Our findings provide a new model for characterizing the self-oligomerization of viral nucleoproteins and studying the dynamic assembly process of viral nucleocapsid in vitro.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5205660PMC
http://dx.doi.org/10.1007/s13238-016-0314-1DOI Listing

Publication Analysis

Top Keywords

ebola virus
8
nucleocapsid-like complex
8
biochemical studies
8
ebov nucleocapsid
8
dynamic procedure
8
nucleocapsid assembly
8
nucleocapsid
5
assembly
5
vitro assembly
4
assembly ebola
4

Similar Publications

Guidance reconciliation and practice question prioritization for a World Health Organization's Ebola and Marburg Disease guideline.

J Clin Epidemiol

December 2024

Department of Internal Medicine, American University of Beirut, Beirut, Lebanon; Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.

Objective: To describe the processes of reconciling overlapping guidance and prioritizing practice questions for a World Health Organization (WHO) guideline on Infection Prevention and Control (IPC) for Ebola and Marburg disease.

Methods: This work involved the reconciliation of guidance, the generation of potential practice questions and the prioritization of those questions. Contributors included the WHO secretariat, the WHO steering group, the guideline methodologists, and the guideline development group (GDG).

View Article and Find Full Text PDF

The Maturation of the International Health Crisis Response: The Polish Typhus Epidemic of 1916-1923 Compared to the African Ebola Virus Disease Epidemic of 2013-2016: Part I, the Polish Epidemic.

Epidemiologia (Basel)

December 2024

Division of Infectious Diseases, Medical Service, South Texas Veterans Healthcare System, 7400 Merton Minter Blvd, San Antonio, TX 78229, USA.

Poland suffered an epidemic of louse-borne typhus from 1916-1923, with 400,000 cases and more than 130,000 deaths. The causative factors were depressed economic conditions and a refugee crisis that engulfed Poland after World War I. The recognition of the epidemic in 1919 stimulated the creation of the League of Red Cross Societies (LRCS).

View Article and Find Full Text PDF

Ebola virus (EBOV) transcription is essentially regulated via dynamic dephosphorylation of its viral transcription activator VP30 by the host phosphatase PP2A. The nucleoprotein NP has emerged as a third key player in the regulation of this process by recruiting both the regulatory subunit B56 of PP2A and its substrate VP30 to initiate VP30 dephosphorylation and hence viral transcription. Both binding sites are located in close proximity to each other in NP's C-terminal disordered region.

View Article and Find Full Text PDF

Background: The robustness and persistence of vaccine antigen-induced antibodies are often used as proxy indicators of vaccine efficacy, but immune responses to vaccine vectors are typically less well-defined. Our study considered the kinetics of immunoglobulin (IgG) responses against the vector (vesicular stomatitis Indiana virus [VSIV]) nucleoprotein (N) and the inserted antigen (Ebola virus [EBOV]) glycoprotein (GP1,2) components of the rVSVΔG-ZEBOV-GP (rVSV-ZEBOV) vaccine and evaluated their use as biomarkers to confirm self-reported vaccination status.

Methods: From the Partnership for Research on Ebola Virus in Liberia (PREVAIL) I clinical trial (NCT02344407), we randomly selected 212 participants who received rVSV-ZEBOV (n=107) or placebo (n=105).

View Article and Find Full Text PDF

Ginkgolic acid inhibits Ebola virus transcription and replication by disrupting the interaction between nucleoprotein and VP30 protein.

Antiviral Res

December 2024

Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, Guangdong, China. Electronic address:

The Ebola virus, a filovirus, has been responsible for significant human fatalities since its discovery. Despite extensive research, effective small-molecule drugs remain elusive due to its complex pathogenesis. Inhibition of RNA synthesis is a promising therapeutic target, and the VP30 protein plays a critical role in this process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!