Ultrasonic radiation can modify some physical properties in liquid/solid interactions, such as wettability. The dependence of solid surface wettability on its vibrational state was studied. Experiments with an interface formed by distilled water deposited on a titanium alloy and surrounded by air were carried out. It is shown that it is possible to control the apparent wettability of a given liquid/solid/gas system by applying sonic-ultrasonic vibrations of controlled amplitude at the interface. The system studied is composed of a drop of distilled water deposited on a flat titanium surface in air. The contact angle was used as an indicator of apparent wettability. It is shown that the apparent wettability of a surface is linearly dependent on the peak vibration velocity and independent of the vibration frequency. Higher vibration speed lowers the contact angle and therefore causes greater surface wettability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultsonch.2016.09.011 | DOI Listing |
J Contam Hydrol
January 2025
Center of Innovation for Flow through Porous Media (COIFPM), Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY, USA.
Controlled laboratory experiments were carried out using the hanging column method. Prior to the experiments, three uniform silica sands, which were originally water-wet, were aged in contact with crude oil until they were moderately oil-wet. Five fractionally wet sands were obtained by mixing the water-wet sands with oil-wet sands containing 25, 50 and 75 vol% oil-wet sands.
View Article and Find Full Text PDFACS Omega
December 2024
School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China.
Adv Mater
December 2024
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
Polymer semiconductors have attracted much attention for photocatalytic hydrogen evolution, but they typically exhibit micrometer-sized particles in water-suspension, causing severe loss in light absorption and exciton recombination. Here a molecular nanophotocatalyst featuring a donor-acceptor motif is presented that solution is processed via a facile stirring nanoprecipitation method assisted by hydrophilic surfactants, enabling an efficient quasi-homogenous hydrogen evolution. In contrast to the original bulk powder (heterogeneous system), these quasi-homogenous nanophotocatalysts exhibit significantly improved light-harvesting, water-wettability, and exciton dissociation, resulting in distinctly enhanced (by four-order-of-magnitude) photocatalytic hydrogen evolution rate.
View Article and Find Full Text PDFPolymers (Basel)
September 2024
Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, China.
The wettability of the proppant is crucial in optimizing the flowback of fracturing fluids and improving the recovery of the produced hydrocarbons. Neutral wet proppants have been proven to improve the fluid flow by reducing the interaction between the fluid and the proppant surface. In this study, a lightweight amphiphobic proppant (LWAP) was prepared by coating a lightweight ceramic proppant (LWCP) with phenolic resin, epoxy resin, polytetrafluoroethylene (PTFE), and trimethoxy(1H,1H,2H,2H-heptadecafluorodecyl)silane (TMHFS) using a layer-by-layer method.
View Article and Find Full Text PDFACS Omega
September 2024
School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China.
The high viscosity of heavy crude oil has been an obstacle to its safe production and economic transportation. In this work, a screened emulsified viscosity reducer system is conducted. Experimental results demonstrate that the most effective viscosity reducing agent comprises sodium oleate (NaOl) and cocamidopropyl betaine (CAB-35) in a ratio of 1:2, achieving a viscosity reduction rate of 94.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!