Cell biology, physiology and enzymology of phosphatidylserine decarboxylase.

Biochim Biophys Acta Mol Cell Biol Lipids

Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, A-8010 Graz, Austria. Electronic address:

Published: January 2017

AI Article Synopsis

  • Phosphatidylethanolamine, a vital phospholipid, is mainly produced by phosphatidylserine decarboxylases (PSD), with a focus on the different PSD types across various life kingdoms.
  • In eukaryotes, type I PSDs function as mitochondrial enzymes, while other types are found in different cellular areas, emphasizing their diverse roles.
  • The article delves into the specifics of mitochondrial Psd1 proteins, covering their function, assembly, and importance in maintaining phospholipid balance, alongside a brief discussion on the enzymology of Psd2.

Article Abstract

Phosphatidylethanolamine is one of the most abundant phospholipids whose major amounts are formed by phosphatidylserine decarboxylases (PSD). Here we provide a comprehensive description of different types of PSDs in the different kingdoms of life. In eukaryotes, type I PSDs are mitochondrial enzymes, whereas other PSDs are localized to other cellular compartments. We describe the role of mitochondrial Psd1 proteins, their function, enzymology, biogenesis, assembly into mitochondria and their contribution to phospholipid homeostasis in much detail. We also discuss briefly the cellular physiology and the enzymology of Psd2. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2016.09.007DOI Listing

Publication Analysis

Top Keywords

physiology enzymology
8
cell biology
4
biology physiology
4
enzymology phosphatidylserine
4
phosphatidylserine decarboxylase
4
decarboxylase phosphatidylethanolamine
4
phosphatidylethanolamine abundant
4
abundant phospholipids
4
phospholipids major
4
major amounts
4

Similar Publications

Complex transcription regulation of acidic chitinase suggests fine-tuning of digestive processes in Drosera binata.

Planta

January 2025

Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P. O. Box 39A, 950 07, Nitra, Slovak Republic.

DbChitI-3, Drosera binata's acidic chitinase, peaks at pH 2.5 from 15 °C to 30 °C. Gene expression is stimulated by polysaccharides and suppressed by monosaccharide digestion, implying a feedback loop in its transcriptional regulation.

View Article and Find Full Text PDF

Clinical and molecular analysis of ESBL, carbapenemase, and colistin-resistant bacteria in UTI patients.

Cell Mol Biol (Noisy-le-grand)

January 2025

Jiangxi Key Laboratory of Oncology (2024SSY06041), Jiangxi Cancer Hospital & Institute, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330029, P.R. China.

Uropathogens, particularly bacteria, can infect any part of the urinary tract and cause bacteriuria. Our study aimed to examine the antibiotic-resistant profile, associated risk factors, and phenotypic and genotypic features of ESBL, carbapenemase, and mcr resistance genes in multidrug-resistant bacteria. Samples were inoculated on culture media, identified using standard biochemical tests, and species confirmation was performed via 16S rRNA gene amplification.

View Article and Find Full Text PDF

Molecular basis for the enzymatic inactivity of class III glutaredoxin ROXY9 on standard glutathionylated substrates.

Nat Commun

January 2025

Department of Plant Molecular Biology and Physiology, Albrecht-von-Haller Institute for Plant Sciences, Georg-August-University Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany.

Class I glutaredoxins (GRXs) are nearly ubiquitous proteins that catalyse the glutathione (GSH)-dependent reduction of mainly glutathionylated substrates. In land plants, a third class of GRXs has evolved (class III). Class III GRXs regulate the activity of TGA transcription factors through yet unexplored mechanisms.

View Article and Find Full Text PDF

Constitutive surface expression of the thromboxane A2 receptor is Pim kinase-dependent.

J Thromb Haemost

January 2025

Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom; Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom. Electronic address:

Background: The thromboxane A2 receptor (TPαR) plays an important role in the amplification of platelet responses during thrombosis. Receptor activity is regulated by internalization and receptor desensitization. The mechanism by which constitutive surface expression of the TPαR is regulated is unknown.

View Article and Find Full Text PDF

Integrating Bacteriocins and Biofilm-Degrading Enzymes to Eliminate Persistence.

Int J Mol Sci

January 2025

Characterization and Interventions for Foodborne Pathogens, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA.

is a Gram-positive bacterium causing listeriosis, a severe infection responsible for significant morbidity and mortality globally. Its persistence on food processing surfaces via biofilm formation presents a major challenge, as conventional sanitizers and antimicrobials exhibit limited efficacy against biofilm-embedded cells. This study investigates a novel approach combining an engineered polysaccharide-degrading enzyme (CAase) with a bacteriocin (thermophilin 110) produced by .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!