Cerebral cavernous malformation (CCM) is a congenital vascular anomaly predominantly located within the central nervous system. Its familial forms (familial cerebral cavernous malformation (FCCM)), inherited in an autosomal dominant manner with incomplete penetrance, are attributed to mutations in CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10 genes. To date, little is known about the genetic alterations leading to FCCM in the Chinese population. We aimed to investigate the genetic defect of FCCM by DNA sequencing in Chinese families. This study enrolled five Chinese families with FCCM. All index cases underwent surgical treatment and were diagnosed with CCM by pathology; their relatives were diagnosed based on radiological and/or pathological evidence. Genomic DNA was extracted from peripheral blood and amplified using polymerase chain reaction (PCR) for DNA sequencing. The five families comprised a total of 21 affected individuals: 12 of these were symptomatic, and 9 were asymptomatic. Sequence analyses in the index patients disclosed three heterozygous loss-of-function mutations in the CCM1/KRIT1 gene in three families, respectively: a novel deletion mutation (c.1780delG; p.Ala594HisfsX67) in exon 16, a novel splice-site mutation (c.1412-1G>A) in the splice acceptor site in intron 13, and a previously described 4-bp deletion (c.1197_1200delCAAA; p.Gln401ThrfsX10) in exon 12. All of these mutations are predicted to cause a premature termination codon to generate a truncated Krev interaction trapped 1 (Krit1) protein. These mutations segregated in affected relatives. Our findings provided new CCM1 gene mutation profiles, which help to elucidate the pathogenesis of FCCM and will be of great significance in genetic counseling.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12031-016-0836-2DOI Listing

Publication Analysis

Top Keywords

cerebral cavernous
12
cavernous malformation
12
novel deletion
8
deletion mutation
8
mutation c1780delg
8
novel splice-site
8
splice-site mutation
8
mutation c1412-1g>a
8
ccm1/krit1 gene
8
familial cerebral
8

Similar Publications

Climate change has caused heat stress (HS) to become an increasingly severe problem for high-producing dairy herds. Although cooling systems allow milk production to remain nearly constant throughout the year, fertility decreases during summer. Physiological counter-current heat transfer mechanisms maintaining brain/hypothalamic and reproductive functions in cattle are vulnerable to HS.

View Article and Find Full Text PDF

Objective: Flow diversion is increasingly used as an endovascular treatment for intracranial aneurysms. FRED-EPI is a prospective, multicenter, French study, conducted to analyze the safety and efficacy of aneurysm treatment with FRED/FRED Jr (Microvention, AlisoViejo, CA, USA) in current clinical practice.

Patients And Methods: Patients with intracranial aneurysms treated with FRED and FRED Jr who agreed to participate were prospectively and consecutively included in all French centers using these devices.

View Article and Find Full Text PDF

Objective: To evaluate iron deposition patterns in patients with cerebral cavernous malformation-related epilepsy (CRE) using quantitative susceptibility mapping (QSM) for detailed analysis of iron distribution associated with a history of epilepsy and severity.

Methods: This study is part of the Quantitative Susceptibility Biomarker and Brain Structural Property for Cerebral Cavernous Malformation Related Epilepsy (CRESS) cohort, a prospective multicenter study. QSM was used to quantify iron deposition in patients with sporadic cerebral cavernous malformation (CCMs).

View Article and Find Full Text PDF

We report a rare case of a missed intracavernous internal carotid artery dissecting aneurysm occurring as a complication of the base of skull fracture with severe brain injury causing acute cavernous sinus syndrome with permanent vision loss. A 31-year-old Myanmar lady had an alleged motor vehicle accident and suffered severe traumatic brain injury with multiple intracranial bleeds, multiple facial bone and base of skull fractures, and limb fractures. At one week post-trauma, she had severe right eye proptosis with vision loss, ophthalmoplegia, chemosis, and high intraocular pressure.

View Article and Find Full Text PDF

Endothelial-mesenchymal transition (EndMT) is defined as an important process of cellular differentiation by which endothelial cells (ECs) are prone to lose their characteristics and transform into mesenchymal cells. During EndMT, reduced expression of endothelial adhesion molecules disrupts intercellular adhesion, triggering cytoskeletal reorganization and mesenchymal transition. Numerous studies have proved that EndMT is a multifaceted biological event driven primarily by cytokines such as TGF-β, TNF-α, and IL-1β, alongside signaling pathways like WNT, Smad, MEK-ERK, and Notch.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!