The quest for exotic quantum states of matter has become one of the most challenging tasks in modern condensed matter communications. Interplay between topology and strong electron-electron interactions leads to lots of fascinating effects since the discovery of the fractional quantum Hall effect. Here, we theoretically study the Rashba-type spin-orbit coupling effect on a fractional quantum spin Hall system by means of finite size exact diagonalization. Numerical evidences from the ground degeneracies, states evolutions, entanglement spectra, and static structure factor calculations demonstrate that non-trivial fractional topological Tao-Thouless-like quantum state can be realized in the fractional quantum spin Hall effect in a thin torus geometric structure by tuning the strength of spin-orbit coupling. Furthermore, the experimental realization of the Tao-Thouless-like state as well as its evolution in optical lattices are also proposed. The importance of this prediction provides significant insight into the realization of exotic topological quantum states in optical lattice, and also opens a route for exploring the exotic quantum states in condensed matters in future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5030710 | PMC |
http://dx.doi.org/10.1038/srep33472 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!