We still do not know how the brain and its computations are affected by nerve cell deaths and their compensatory learning processes, as these develop in neurodegenerative diseases (ND). Compensatory learning processes are ND symptoms usually observed at a point when the disease has already affected large parts of the brain. We can register symptoms of ND such as motor and/or mental disorders (dementias) and even provide symptomatic relief, though the structural effects of these are in most cases not yet understood. It is very important to obtain early diagnosis, which can provide several years in which we can monitor and partly compensate for the disease's symptoms, with the help of various therapies. In the case of Parkinson's disease (PD), in addition to classical neurological tests, measurements of eye movements are diagnostic. We have performed measurements of latency, amplitude, and duration in reflexive saccades (RS) of PD patients. We have compared the results of our measurement-based diagnoses with standard neurological ones. The purpose of our work was to classify how condition attributes predict the neurologist's diagnosis. For n = 10 patients, the patient age and parameters based on RS gave a global accuracy in predictions of neurological symptoms in individual patients of about 80%. Further, by adding three attributes partly related to patient 'well-being' scores, our prediction accuracies increased to 90%. Our predictive algorithms use rough set theory, which we have compared with other classifiers such as Naïve Bayes, Decision Trees/Tables, and Random Forests (implemented in KNIME/WEKA). We have demonstrated that RS are powerful biomarkers for assessment of symptom progression in PD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5038771PMC
http://dx.doi.org/10.3390/s16091498DOI Listing

Publication Analysis

Top Keywords

compensatory learning
8
learning processes
8
multimodal learning
4
learning intelligent
4
intelligent prediction
4
prediction symptom
4
symptom development
4
development individual
4
individual parkinson's
4
patients
4

Similar Publications

Background: The APOE4 genotype appears to confer differential risk of Alzheimer's disease for women compared to men. As APOE4 effects in midlife women can be subtle (e.g.

View Article and Find Full Text PDF

Background: Sex-specific functional-brain changes during memory tasks have been reported along the Alzheimer's disease (AD) continuum. However, mid-life risk factor effects on memory-related neural activation remain less clear in women with increased AD risk. Here we examined brain activations during a modified pattern-separation task and their associations with verbal memory scores in midlife women at risk for AD due to family history.

View Article and Find Full Text PDF

Background: Memory decline, which is especially prevalent in Alzheimer's disease (AD), has been studied via fMRI, primarily focusing on the prefrontal cortex and hippocampus. However, emerging evidence suggests that the brainstem, alongside various midbrain regions, is an initial target for pathological processes like hyperphosphorylated TAU protein accumulation. Among these, the locus coeruleus, a noradrenergic nucleus in the pons, projects to critical midbrain areas supporting memory encoding.

View Article and Find Full Text PDF

Objective: This study aimed to explore longitudinal relationships between neurophysiological biomarkers and upper limb motor function recovery in stroke patients, focusing on electroencephalography (EEG) and transcranial magnetic stimulation (TMS) metrics.

Methods: This longitudinal cohort study analyzed neurophysiological, clinical, and demographic data from 102 stroke patients enrolled in the DEFINE cohort. We investigated the associations between baseline and post-intervention changes in the EEG theta/alpha ratio (TAR) and TMS metrics with upper limb motor functionality, assessed using the outcomes of five tests: the Fugl-Meyer Assessment (FMA), Handgrip Strength Test (HST), Pinch Strength Test (PST), Finger Tapping Test (FTT), and Nine-Hole Peg Test (9HPT).

View Article and Find Full Text PDF

EEG Oscillations as Neuroplastic Markers of Neural Compensation in Spinal Cord Injury Rehabilitation: The Role of Slow-Frequency Bands.

Brain Sci

December 2024

Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.

Background: Spinal cord injury (SCI) affects approximately 250,000 to 500,000 individuals annually. Current therapeutic interventions predominantly focus on mitigating the impact of physical and neurological impairments, with limited functional recovery observed in many patients. Electroencephalogram (EEG) oscillations have been investigated in this context of rehabilitation to identify effective markers for optimizing rehabilitation treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!