Psychosocial stress inhibits additional stress-induced hyperexpression of NO synthases and IL-1β in brain structures.

Pharmacol Rep

Institute of Pharmacology, Polish Academy of Sciences, Department of Physiology, 31-343 Kraków, Smętna street 12, Poland.

Published: December 2016

Background: The aim of this study was to compare the expression of interleukin-1β (IL-1β), neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS) in the prefrontal cortex (PFC), hippocampus (HIP) and hypothalamus (HT) during chronic crowding (CS) (psychosocial) and restraint (RS) (physico-psychological) stress. Adaptational changes of these stress mediators to a subsequent acute RS, in two models of chronic stress were investigated.

Methods: Rats were crowded (24 in one cage) or restrained in metal tubes for 10min twice a day for 3, 7, and 14 consecutive days and decapitated. For determination of adaptational changes the chronically crowded and restrained rats 24h after the last stress session were subjected to a single 10min RS. The IL-1β, nNOS and iNOS protein levels in brain structures samples were analyzed by Western blot procedure.

Results: Chronic CS for 3days did not markedly change the subsequent acute stress induced expression of nNOS, iNOS and IL-1β protein level in PFC and iNOS protein level in HT. CS markedly decreased the expression of nNOS, iNOS and IL-1β in HIP. By contrast, parallel chronic RS, significantly increased the subsequent acute stress-induced expression of iNOS and IL-1β in PFC and considerably increased iNOS level in HT.

Conclusion: Chronic psychosocial stress, may protect against possible harmful action of hyperproduction of iNOS and iNOS derived nitric oxide (NO) mainly in PFC and HIP. By contrast, chronic physico-psychosocial stress may strongly potentiate additional stress-induced harmful effects of NOS and IL-1β hyperproduction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pharep.2016.09.003DOI Listing

Publication Analysis

Top Keywords

nitric oxide
12
subsequent acute
12
nnos inos
12
inos il-1β
12
inos
9
psychosocial stress
8
additional stress-induced
8
brain structures
8
oxide synthase
8
adaptational changes
8

Similar Publications

Metabolically stable apelin analogs: development and functional role in water balance and cardiovascular function.

Clin Sci (Lond)

January 2025

Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France.

Apelin, a (neuro) vasoactive peptide, plays a prominent role in controlling water balance and cardiovascular functions. Apelin and its receptor co-localize with vasopressin in magnocellular vasopressinergic neurons. Apelin receptors (Apelin-Rs) are also expressed in the collecting ducts of the kidney, where vasopressin type 2 receptors are also present.

View Article and Find Full Text PDF

Nitric oxide synthase inhibitors reduce the formation of neutrophil extracellular traps and alleviate airway inflammation in the mice model of asthma.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China.

Asthma, a widespread chronic inflammatory disease can contribute to different degrees of lung function damage. The objective of this study is to explore the potential effects of nitric oxide synthase (NOS) inhibitors in asthma using mice model induced by ovalbumin (OVA). BALB/c mice were treated with OVA to establish an asthma model.

View Article and Find Full Text PDF

Exaggerated neuronal excitation by glutamate is a well-known cause of excitotoxicity, a key factor in numerous neurodegenerative disorders. This study examined the neurotoxic effect of monosodium glutamate (MSG) in the brain cortex of rats and focused on assessing the potential neuroprotective effects of omega-3 polyunsaturated fatty acids (ω-3 PUFAs). Four groups of adult male rats (n = 10) were assigned as follows; normal control, ω-3 PUFAs (400 mg/kg) alone, MSG (4 mg/g) alone, and MSG plus ω-3 PUFAs (4 mg/g MSG plus 400 mg/kg ω-3 PUFAs).

View Article and Find Full Text PDF

Quercetin (QE), a particular flavonoid, is well known for its medicinal effects, including anti-oxidant, hypoglycemic, and anti-inflammatory effects. In this review, the findings of QE effects on diabetes STZinduced, alloxan-induced, and its complications have been summarized with a particular focus on in vitro, in vivo, and clinical trials. Consequently, QE mediates several mechanisms, including ameliorating tumor necrosis factor (TNF)-α, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), interleukin (IL)-1β, IL-8, and IL-10 expression, increasing insulin glucose uptake to inhibit insulin resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!