Psychosocial stress inhibits additional stress-induced hyperexpression of NO synthases and IL-1β in brain structures.

Pharmacol Rep

Institute of Pharmacology, Polish Academy of Sciences, Department of Physiology, 31-343 Kraków, Smętna street 12, Poland.

Published: December 2016

Background: The aim of this study was to compare the expression of interleukin-1β (IL-1β), neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS) in the prefrontal cortex (PFC), hippocampus (HIP) and hypothalamus (HT) during chronic crowding (CS) (psychosocial) and restraint (RS) (physico-psychological) stress. Adaptational changes of these stress mediators to a subsequent acute RS, in two models of chronic stress were investigated.

Methods: Rats were crowded (24 in one cage) or restrained in metal tubes for 10min twice a day for 3, 7, and 14 consecutive days and decapitated. For determination of adaptational changes the chronically crowded and restrained rats 24h after the last stress session were subjected to a single 10min RS. The IL-1β, nNOS and iNOS protein levels in brain structures samples were analyzed by Western blot procedure.

Results: Chronic CS for 3days did not markedly change the subsequent acute stress induced expression of nNOS, iNOS and IL-1β protein level in PFC and iNOS protein level in HT. CS markedly decreased the expression of nNOS, iNOS and IL-1β in HIP. By contrast, parallel chronic RS, significantly increased the subsequent acute stress-induced expression of iNOS and IL-1β in PFC and considerably increased iNOS level in HT.

Conclusion: Chronic psychosocial stress, may protect against possible harmful action of hyperproduction of iNOS and iNOS derived nitric oxide (NO) mainly in PFC and HIP. By contrast, chronic physico-psychosocial stress may strongly potentiate additional stress-induced harmful effects of NOS and IL-1β hyperproduction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pharep.2016.09.003DOI Listing

Publication Analysis

Top Keywords

nitric oxide
12
subsequent acute
12
nnos inos
12
inos il-1β
12
inos
9
psychosocial stress
8
additional stress-induced
8
brain structures
8
oxide synthase
8
adaptational changes
8

Similar Publications

NLRP3: a key regulator of skin wound healing and macrophage-fibroblast interactions in mice.

Cell Commun Signal

January 2025

Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Hohhot, 010018, China.

Wound healing is a highly coordinated process driven by intricate molecular signaling and dynamic interactions between diverse cell types. Nod-like receptor pyrin domain-containing protein 3 (NLRP3) has been implicated in the regulation of inflammation and tissue repair; however, its specific role in skin wound healing remains unclear. This study highlights the pivotal role of NLRP3 in effective skin wound healing, as demonstrated by delayed wound closure and altered cellular and molecular responses in NLRP3-deficient (NLRP3) mice.

View Article and Find Full Text PDF

Emerging strategies for nitric oxide production and their topical application as nanodressings to promote diabetic wound healing.

J Nanobiotechnology

January 2025

Department of Biobmedical Engineering and Technology, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.

The challenges associated with prolonged healing or non-healing of chronic diabetic wounds contribute significantly to the increased incidence of lower limb amputation. A pivotal factor in the impediment of healing is the reduced production of endogenous nitric oxide (NO) due to the hyperglycemic microenvironment typical of chronic diabetes. While both endogenous and exogenous NO have been shown to promote the healing process of diabetic wounds, the direct application of NO in wound management is limited due to its gaseous nature and the risk of explosive release.

View Article and Find Full Text PDF

Vasoplegia in Heart, Lung, or Liver Transplantation: A Narrative Review.

J Cardiothorac Vasc Anesth

January 2025

Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA.

Vasoplegia is a pathophysiologic state of hypotension in the setting of normal or high cardiac output and low systemic vascular resistance despite euvolemia and high-dose vasoconstrictors. Vasoplegia in heart, lung, or liver transplantation is of particular interest because it is common (approximately 29%, 28%, and 11%, respectively), is associated with adverse outcomes, and because the agents used to treat vasoplegia can affect immunosuppressive and other drug metabolism. This narrative review discusses the pathophysiology, risk factors, and treatment of vasoplegia in patients undergoing heart, lung, and liver transplantation.

View Article and Find Full Text PDF

As breath nitric oxide (NO) is a biomarker of respiratory inflammation, reliable techniques for the online detection of ppb-level NO in exhaled breath are essential for the noninvasive diagnosis of respiratory inflammation. Here, we report a breath NO sensor based on the multiperiodic spectral reconstruction neural network. First, a spectral reconstruction method that transforms a spectrum from the wavelength domain to the intensity domain is proposed to remove noise and interference signals from the spectrum.

View Article and Find Full Text PDF

Controlins I-X, Resin Glycosides from the Seeds of and Their Biological Activities.

J Nat Prod

January 2025

School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, People's Republic of China.

Ten new resin glycosides, controlins I-X (-), were isolated from the seeds of . Their structures were established by spectroscopic analysis as well as by chemical means. Compounds were identified as glycosidic acid methyl esters, considered as artifacts generated via transesterification with MeOH from natural resin glycosides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!