Light-Induced Polarization-Directed Growth of Optically Printed Gold Nanoparticles.

Nano Lett

Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Godoy Cruz 2390, C1425FQD Ciudad de Buenos Aires, Argentina.

Published: October 2016

Optical printing has been proved a versatile and simple method to fabricate arbitrary arrays of colloidal nanoparticles (NPs) on substrates. Here, we show that is also a powerful tool for studying chemical reactions at the single NP level. We demonstrate that 60 nm gold NPs immobilized by optical printing can be used as seeds to obtain larger NPs by plasmon-assisted reduction of aqueous HAuCl. The final size of each NP is simply controlled by the irradiation time. Moreover, we show conditions for which the growth occurs preferentially in the direction of light polarization, enabling the in situ anisotropic reshaping of the NPs in predetermined orientations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.6b03174DOI Listing

Publication Analysis

Top Keywords

optical printing
8
light-induced polarization-directed
4
polarization-directed growth
4
growth optically
4
optically printed
4
printed gold
4
gold nanoparticles
4
nanoparticles optical
4
printing proved
4
proved versatile
4

Similar Publications

3D Printed Biomimetic Bilayer Limbal Implants for regeneration of the Corneal Structure in Limbal Stem Cell Deficiency.

Acta Biomater

January 2025

Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China. Electronic address:

Limbal stem cell deficiency (LSCD) causes vision loss and is often treated by simple corneal epithelial cell transplantation with poor long-term efficiency. Here, we present a biomimetic bilayer limbal implant using digital light processing 3D printing technology with gelatin methacrylate (GelMA) and poly (ethylene glycol) diacrylate (PEGDA) bioinks containing corneal epithelial cells (CECs) and corneal stromal stem cells (CSSCs), which can transplant CECs and improve the limbal niche simultaneously. The GelMA/PEGDA hydrogel possessed robust mechanical properties to support surgical transplantation and had good transparency, suitable swelling and degradation rate as a corneal implant.

View Article and Find Full Text PDF

We propose a non-magnetic transparent heating film based on silver nanowires (Ag-NWs) for application in spin-exchange relaxation-free (SERF) magnetic field measurement devices. To achieve ultra-high sensitivity in atomic magnetometers, the atoms within the alkali metal vapor cell must be maintained in a stable and uniform high-temperature environment. Ag-NWs, as a transparent conductive material with exceptional electrical conductivity, are well suited for this application.

View Article and Find Full Text PDF

Glaucoma treatment involves reducing the intraocular pressure (IOP), which can damage the optic nerve, to a normal range. Aqueous drainage devices may be used for treatment, and a variety of devices have been proposed. However, they have a non-variable and uniform inner diameter, which makes it difficult to accommodate the IOP fluctuations that occur after glaucoma surgery.

View Article and Find Full Text PDF

This study evaluated the color stability, surface roughness, and hardness of 3D-printed and heat-polymerized denture materials. A total of 90 samples were prepared, with equal numbers of 3D-printed and heat-polymerized disks. The initial hardness, surface roughness, and color values of the samples were measured.

View Article and Find Full Text PDF

Computer-aided design and fabrication of statistically shaped nasal prostheses: A feasibility study.

J Prosthet Dent

January 2025

Head and Neck Surgeon and Head, Verwelius 3D Lab, Department of Head and Neck Oncology and Surgery, Netherlands Cancer Institute, Amsterdam, The Netherlands.

Statement Of Problem: A nasal prosthesis may compensate for a partial or complete defect of the nose associated with trauma or amputation. However, the design and production is time-consuming, expensive, and expertize-dependent. Computer-generated prosthesis models and 3D printing can optimize the process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!