Altered gravity conditions, such as experienced by organisms during spaceflight, are known to cause transcriptomic and proteomic changes. We describe the proteomic changes in whole adult Drosophila melanogaster (fruit fly) but focus specifically on the localized changes in the adult head in response to chronic hypergravity (3 g) treatment. Canton S adult female flies (2 to 3 days old) were exposed to chronic hypergravity for 9 days and compared with 1 g controls. After hypergravity treatment, either whole flies (body + head) or fly-head-only samples were isolated and evaluated for quantitative comparison of the two gravity conditions using an isobaric tagging liquid chromatography-tandem mass spectrometry approach. A total of 1948 proteins from whole flies and 1480 proteins from fly heads were differentially present in hypergravity-treated flies. Gene Ontology analysis of head-specific proteomics revealed host immune response, and humoral stress proteins were significantly upregulated. Proteins related to calcium regulation, ion transport, and ATPase were decreased. Increased expression of cuticular proteins may suggest an alteration in chitin metabolism and in chitin-based cuticle development. We therefore present a comprehensive quantitative survey of proteomic changes in response to chronic hypergravity in Drosophila, which will help elucidate the underlying molecular mechanism(s) associated with altered gravity environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jproteome.6b00030 | DOI Listing |
Environ Res
November 2023
School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China. Electronic address:
Exposure to extreme environments causes specific acute and chronic physiological responses in humans. The adaptation and the physiological processes under extreme environments predominantly affect multiple functional systems of the organism, in particular, the immune system. Dysfunction of the immune system affected by several extreme environments (including hyperbaric environment, hypoxia, blast shock, microgravity, hypergravity, radiation exposure, and magnetic environment) has been observed from clinical macroscopic symptoms to intracorporal immune microenvironments.
View Article and Find Full Text PDFInt J Mol Sci
January 2023
Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, F-54000 Nancy, France.
During spaceflights, astronauts face different forms of stress (e.g., socio-environmental and gravity stresses) that impact physiological functions and particularly the immune system.
View Article and Find Full Text PDFInt J Mol Sci
June 2022
Stress, Immunity, Pathogens Laboratory, SIMPA, Université de Lorraine, F-54000 Nancy, France.
Front Physiol
April 2022
Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States.
Tactical aviation imposes unprecedented physical challenges including repetitive exposure to hypergravity, hyperoxia, increased work of breathing, and profound cognitive workloads. Each stressor evokes outcomes ranging from musculoskeletal duress and atelectasis to physical and cognitive fatigue, the latter among the foremost threats to aviators. Whereas sleep loss is traditionally considered the primary cause of fatigue in aviators, converging experimental, observational, and medical studies have identified biochemical mechanisms promoting onset of fatigue.
View Article and Find Full Text PDFBackground Hypergravity may promote human hemostasis thereby increasing thrombotic risk. Future touristic suborbital spaceflight will expose older individuals with chronic medical conditions, who are at much higher thromboembolic risk compared with professional astronauts, to hypergravity. Therefore, we tested the impact of hypergravity on hemostasis in healthy volunteers undergoing centrifugation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!