AI Article Synopsis

  • A child had weak muscles, was behind in development, and had an unusual brain scan.
  • Scientists found a new change in a gene called GFAP, labeled p.R376W, that might cause problems.
  • They decided that this change is dangerous and likely causes a disease called Alexander disease.

Article Abstract

A de novo GFAP variant, p.R376W, was identified in a child presenting with hypotonia, developmental delay, and abnormal brain MRI. Following the 2015 ACMG variant classification guidelines and the functional studies showing protein aggregate formation in vitro, p.R376W should be classified as a pathogenic variant, causative for Alexander disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5018595PMC
http://dx.doi.org/10.1002/ccr3.655DOI Listing

Publication Analysis

Top Keywords

gfap variant
8
alexander disease
8
functional characterization
4
characterization gfap
4
variant
4
variant uncertain
4
uncertain significance
4
significance alexander
4
disease case
4
case setting
4

Similar Publications

Introduction: The differentiation between Alzheimer's disease (AD) and behavioral-variant frontotemporal dementia (bvFTD) can be complicated in the initial phase by shared symptoms and pathophysiological traits. Nevertheless, advancements in understanding AD's diverse pathobiology suggest the potential for establishing blood-based methods for differential diagnosis.

Methods: We devised a novel assay combining immunoprecipitation and mass spectrometry (IP-MS) to quantify Amyloid-beta (Aβ) peptides in plasma.

View Article and Find Full Text PDF

Background: Alexander disease is an autosomal dominant leukodystrophy caused by heterozygous pathogenic variants in the glial fibrillar acidic protein (GFAP) gene. Although increasingly recognised, there is evidence that Alexander disease, particularly later-onset disease, is significantly underdiagnosed and its true prevalence is unknown (the only population-based prevalence was estimated at one in 2.7 million).

View Article and Find Full Text PDF

Plasma neurofilament light outperforms glial fibrillary acidic protein in differentiating behavioural variant frontotemporal dementia from primary psychiatric disorders.

J Neurol Sci

December 2024

Neuropsychiatry, Royal Melbourne Hospital, 300 Grattan, St Parkville, VIC 3052, Australia; Department of Psychiatry, University of Melbourne, Grattan St Parkville, 3052 Melbourne, VIC, Australia.

Objective: Timely, accurate distinction between behavioural variant frontotemporal dementia (bvFTD) and primary psychiatric disorders (PPD) is a clinical challenge. Blood biomarkers such as neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) have shown promise. Prior work has shown NfL helps distinguish FTD from PPD.

View Article and Find Full Text PDF

The genetic architecture of white matter lesions (WMLs) in Asian populations has not been well-characterized. Here, we performed a genome-wide association study (GWAS) to identify loci associated with the WML volume. Brain MRI and DNA samples were collected from 9479 participants in the Japan Prospective Studies Collaboration for Aging and Dementia (JPSC-AD).

View Article and Find Full Text PDF
Article Synopsis
  • Inherited motor neuron diseases (MND) like hereditary spastic paraplegias (HSP) involve the death or dysfunction of nerve cells that control muscle activity, but genetic variants may also affect other supportive cells.
  • Researchers used a rat model with a specific TFG mutation that mimics human HSP symptoms, such as motor deficits and spasticity, to investigate the source of axonopathy in the corticospinal tract.
  • Results showed that introducing the normal TFG gene into specific neurons significantly improved motor function, while targeting supportive glial cells did not yield similar benefits, highlighting the importance of neuron-focused therapies for TFG-related HSP.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!