Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: RBCs suspended in plasma form multicellular aggregates under low-flow conditions, increasing apparent blood viscosity at low shear rates. It has previously been unclear, however, if RBC aggregation affects microvascular perfusion. Here, we analyzed the impact of RBC aggregation on perfusion and 'capillary' hematocrit in an AMVN at driving pressures ranging from 5 to 60 cm H O to determine if aggregation could improve tissue oxygenation.
Methods: RBCs were suspended at 30% hematocrit in either 46.5 g/L dextran 40 (D40, non-aggregating medium) or 35 g/L dextran 70 (D70, aggregating medium) solutions with equal viscosity.
Results: Aggregation was readily observed in the AMVN for RBCs suspended in D70 at driving pressures ≤40 cm H O. The AMVN perfusion rate was the same for RBCs suspended in aggregating and non-aggregating medium, at both 'venular' and 'capillary' level. Estimated 'capillary' hematocrit was higher for D70 suspensions than for D40 suspensions at intermediate driving pressures (5-40 cm H O).
Conclusions: We conclude that although RBC aggregation did not affect the AMVN perfusion rate independently of the driving pressure, a higher hematocrit in the 'capillaries' of the network for D70 suspensions suggested a better oxygen transport capacity in the presence of RBC aggregation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5357595 | PMC |
http://dx.doi.org/10.1111/micc.12317 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!