A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of red blood cell aggregation on perfusion of an artificial microvascular network. | LitMetric

Influence of red blood cell aggregation on perfusion of an artificial microvascular network.

Microcirculation

Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, Texas, USA.

Published: July 2017

Objective: RBCs suspended in plasma form multicellular aggregates under low-flow conditions, increasing apparent blood viscosity at low shear rates. It has previously been unclear, however, if RBC aggregation affects microvascular perfusion. Here, we analyzed the impact of RBC aggregation on perfusion and 'capillary' hematocrit in an AMVN at driving pressures ranging from 5 to 60 cm H O to determine if aggregation could improve tissue oxygenation.

Methods: RBCs were suspended at 30% hematocrit in either 46.5 g/L dextran 40 (D40, non-aggregating medium) or 35 g/L dextran 70 (D70, aggregating medium) solutions with equal viscosity.

Results: Aggregation was readily observed in the AMVN for RBCs suspended in D70 at driving pressures ≤40 cm H O. The AMVN perfusion rate was the same for RBCs suspended in aggregating and non-aggregating medium, at both 'venular' and 'capillary' level. Estimated 'capillary' hematocrit was higher for D70 suspensions than for D40 suspensions at intermediate driving pressures (5-40 cm H O).

Conclusions: We conclude that although RBC aggregation did not affect the AMVN perfusion rate independently of the driving pressure, a higher hematocrit in the 'capillaries' of the network for D70 suspensions suggested a better oxygen transport capacity in the presence of RBC aggregation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5357595PMC
http://dx.doi.org/10.1111/micc.12317DOI Listing

Publication Analysis

Top Keywords

rbcs suspended
16
rbc aggregation
16
driving pressures
12
aggregation perfusion
8
'capillary' hematocrit
8
non-aggregating medium
8
amvn perfusion
8
perfusion rate
8
d70 suspensions
8
aggregation
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!