Fungal and cyanobacterial gene expression in a lichen symbiosis: Effect of temperature and location.

Fungal Biol

Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland; Institute of Plant Sciences, University of Graz, Holteigasse 6, 8010 Graz, Austria. Electronic address:

Published: October 2016

Organisms have evolved different cellular mechanisms to deal with environmental stress, primarily through complex molecular mechanisms including protein refolding and DNA repair. As mutualistic symbioses, lichens offer the possibility of analyzing molecular stress responses in a particularly tight interspecific relationship. We study the widespread cyanolichen Peltigera membranacea, a key player in carbon and nitrogen cycling in terrestrial ecosystems at northern latitudes. We ask whether increased temperature is reflected in mRNA levels of selected damage control genes, and do the response patterns show geographical associations? Using real-time PCR quantification of 38 transcripts, differential expression was demonstrated for nine cyanobacterial and nine fungal stress response genes (plus the fungal symbiosis-related lec2 gene) when the temperature was increased from 5 °C to 15 °C and 25 °C. Principle component analysis (PCA) revealed two gene groups with different response patterns. Whereas a set of cyanobacterial DNA repair genes and the fungal lec2 (PC1 group) showed an expression drop at 15 °C vs. 5 °C, most fungal candidates (PC2 group) showed increased expression at 25 °C vs. 5 °C. PC1 responses also correlated with elevation. The correlated downregulation of lec2 and cyanobacterial DNA repair genes suggests a possible interplay between the symbionts warranting further studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.funbio.2016.07.002DOI Listing

Publication Analysis

Top Keywords

dna repair
12
response patterns
8
genes fungal
8
cyanobacterial dna
8
repair genes
8
fungal
5
fungal cyanobacterial
4
cyanobacterial gene
4
expression
4
gene expression
4

Similar Publications

Background: Epidemiological studies associate an increase in breast cancer risk, particularly triple-negative breast cancer (TNBC), with lack of breastfeeding. This is more prevalent in African American women, with significantly lower rate of breastfeeding compared to Caucasian women. Prolonged breastfeeding leads to gradual involution (GI), whereas short-term or lack of breastfeeding leads to abrupt involution (AI) of the breast.

View Article and Find Full Text PDF

CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD/NADH ratio.

J Exp Clin Cancer Res

January 2025

School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.

Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.

View Article and Find Full Text PDF

Purpose: Preimplantation aneuploidy in humans is one of the primary causes of implantation failure and embryo miscarriage. This study was conducted to gain insight into gene expression changes that may result from aneuploidy in blastocysts through RNA-Seq analysis.

Methods: The surplus embryos of preimplantation genetic testing for aneuploidy (PGT-A) candidate couples with normal karyotype and maternal age < 38 were collected following identical ovarian stimulation protocol.

View Article and Find Full Text PDF

Endothelial-Ercc1 DNA repair deficiency provokes blood-brain barrier dysfunction.

Cell Death Dis

January 2025

Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.

Aging of the brain vasculature plays a key role in the development of neurovascular and neurodegenerative diseases, thereby contributing to cognitive impairment. Among other factors, DNA damage strongly promotes cellular aging, however, the role of genomic instability in brain endothelial cells (EC) and its potential effect on brain homeostasis is still largely unclear. We here investigated how endothelial aging impacts blood-brain barrier (BBB) function by using excision repair cross complementation group 1 (ERCC1)-deficient human brain ECs and an EC-specific Ercc1 knock out (EC-KO) mouse model.

View Article and Find Full Text PDF

SIRT6 promotes angiogenesis by enhancing VEGFA secretion via demyristoylation in endothelial cell.

J Mol Cell Cardiol

January 2025

Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai 200032, China; State Key Laboratory of Cardiology, Zhongshan Hospital, Fudan University, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China. Electronic address:

Angiogenesis plays a pivotal role in ischemic cardiovascular disease, accompanied by epigenetic regulation during this process. Sirtuin 6 (SIRT6) has been implicated in the regulation of DNA repair, transcription and aging, with its deacetylase activity fully studied. However, the role of SIRT6 demyristoylase activity remains less clear, with even less attention given to its myristoylated substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!