Water pollution has been a major concern for agrarian societies like Pakistan. Pharmaceutical industries are amongst the foremost contributor to industrial waste. Present study addresses the generation of oxidative stress caused by 2 months exposure to pharmaceutical wastewater in rats and their response to oral treatment with vitamin E, a potent antioxidant. The rats were randomized into five groups (n = 5) named as negative control, pharmaceutical wastewater (PEW) 100 %, PEW 10 %, PEW 1 %, and PEW 100 % + vitamin E. Oxidative damage in rats was evaluated by estimation of the activities of total superoxide dismutase (T-SOD), catalase (CAT), and the concentration of hydrogen peroxide (HO) in the liver, kidney, and blood/plasma. Exposure to pharmaceutical wastewater significantly decreased the activities of T-SOD and CAT and concentration of HO in the liver and kidney and blood/plasma. Exposure to 100 % pharmaceutical wastewater exhibited a maximum decline in T-SOD activity, and activity was reduced to only 63.57 U/mL, 32.65, and 43.57 U/mg of protein in the plasma, kidney, and liver, respectively. Exposure to wastewater minimized activity CAT to 89.25 U/g of hemoglobin, 54.36, and 62.95 U/mg of protein in the blood, kidney, and liver, respectively. Treatment with vitamin E significantly increased the activity of T-SOD and CAT. However, increase in concentration of HO was also observed in vitamin E exposed rats. Histopathology of the kidney revealed coagulative necrosis of renal epithelial cells and peritubular congestion. Endocardium showed infiltration of inflammatory cells and cellular breakdown in some areas. Lung sections exhibited atelectasis and emphysema of alveoli suggesting decline in lung function. The anatomy of the liver was also compromised due to severe degeneration and cellular swelling. The present study concluded that pharmaceutical wastewater induced severe oxidative stress in Wistar rats and ensued in histopathological lesions in several vital organs suggesting its high toxicity. Non-enzymatic antioxidant vitamin E may ameliorate oxidative stress induced by pharmaceutical wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-016-7717-7DOI Listing

Publication Analysis

Top Keywords

pharmaceutical wastewater
28
oxidative stress
16
exposure pharmaceutical
12
wistar rats
8
pharmaceutical
8
wastewater
8
treatment vitamin
8
cat concentration
8
liver kidney
8
kidney blood/plasma
8

Similar Publications

Pharmaceuticals and personal care products (PPCPs) are emerging contaminants (ECs), whose presence in the environment is of increasing concern due to their widespread use and possible detrimental effects on wildlife and humans. These chemicals may present multiple hazardous properties such as environmental persistence, toxicity, high mobility, and the potential for bioaccumulation. In this study, extended bibliographic research was conducted to characterize the removal efficiency (RE) of PPCPs in wastewater treatment plants (WWTPs) considering different technologies.

View Article and Find Full Text PDF

Mesoporous materials have garnered significant interest because of their porous structure, large surface area and ease of surface functionalization to incorporate the functional groups of choice. Herein, chiral mesoporous silica nanoparticles (CMSNPs) were prepared using quaternary amino silane as the template, tetramethyl orthosilicate as the silica source and proline and cellulose as chiral selector. The developed CMSNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis, BET surface area analysis and BJH pore size/volume analysis.

View Article and Find Full Text PDF

Composite photocatalysts based on metal nanoparticles and functional polymers attract much attention compared to inorganic photocatalysts. In this study, a reusable magnetite/anion exchanger (FeO/PPE-2) functional material is synthesized by a hydrothermal method, and its photocatalytic activity is evaluated for the photocatalytic degradation of Rhodamine B (RhB). The results from materials characterization confirm a well-defined morphology of magnetic FeO/PPE-2 functional material and the formation of FeO nanocrystals with different shapes and sizes on the surface of anion exchange material (PPE-2).

View Article and Find Full Text PDF

Exploiting CotA laccase from Antarctic Bacillus sp. PAMC28748 for efficient mediator-assisted dye decolorization and ABTS regeneration.

Chemosphere

January 2025

Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea; Genome-based Bio-IT Convergence Institute, Asan, 31460, Republic of Korea; Bio Big Data-based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan, 31460, Republic of Korea; Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, 31460, Republic of Korea. Electronic address:

Laccases are of particular interest in addressing environmental challenges, such as the degradation of triphenylmethane (TPM) dyes, including crystal violet (CV) and Coomassie Brilliant Blue (CBB), which are commonly used in SDS-PAGE for protein visualization. However, these dyes present significant environmental concerns due to their resistance to degradation, which makes their removal from industrial wastewater a major challenge. To address this, the current study investigates the potential of a novel CotA laccase derived from Bacillus sp.

View Article and Find Full Text PDF

Wastewater is commonly contaminated with many pharmaceutical pollutants, so an efficient purification method is required for their removal from wastewater. In this regard, an innovative tertiary Se/SnO@CMC/Fe-GA nanocomposite was synthesized through encapsulation of metal organic frameworks (Fe-glutaric acid) onto Se/SnO-embedded-sodium carboxy methyl cellulose matrix to thoroughly evaluate its effectiveness for adsorption of levofloxacin drug from wastewater. The prepared Se/SnO@CMC/Fe-GA nanocomposite was analyzed via UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) to valuate optical property, size, morphology, thermal stability, and chemical composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!