Remote Raman Efficiencies and Cross-Sections of Organic and Inorganic Chemicals.

Appl Spectrosc

Hawai'i Institute of Geophysics and Planetology, SOEST, University of Hawaii at Manoa, Honolulu, Hawai'i, USA.

Published: May 2017

We determined Raman cross-sections of various organic liquids and inorganic polyatomic ions in aqueous solutions with a 532 nm pulsed laser using remote Raman systems developed at the University of Hawaii. Using a calibrated integrating sphere as a light source, we converted the intensity counts in the spectrum of the light from the integrating sphere measured with UH remote Raman instrument to spectral radiance. From these data, a response function of the remote Raman instrument was obtained. With the intensity-calibrated instrument, we collected remote Raman data from a standard 1 mm path length fused silica spectrophotometer cell filled with cyclohexane. The measured value of the differential Raman cross-section for the 801 cm vibrational mode of cyclohexane is 4.55 × 10 cm sr molecule when excited by a 532 nm laser, in good agreement with the values reported in the literature. Using the measured cyclohexane Raman cross-section as a reference and relative Raman mode intensities of the various ions and organic liquids, we calculated the Raman cross-sections of the strongest Raman lines of nitrate, sulfate, carbonate, phosphate ions, and organic liquids by maintaining same experimental conditions for remote Raman detection. These relative Raman cross-section values will be useful for estimating detection capabilities of remote Raman systems for planetary exploration.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0003702816668531DOI Listing

Publication Analysis

Top Keywords

remote raman
28
raman
13
organic liquids
12
raman cross-section
12
cross-sections organic
8
raman cross-sections
8
raman systems
8
integrating sphere
8
raman instrument
8
relative raman
8

Similar Publications

Background And Hypothesis: Efficient arteriovenous access (VA) surveillance is vital for early identification of dysfunctional access, allowing timely intervention to prevent thrombosis. This study compares the efficacy of adding remote software surveillance to standard clinical care across our units.

Methods: We conducted a 12-month prospective study on maintenance hemodialysis (HD) patients using Vasc-Alert software technology to assist clinical decision-making in 2 satellite HD units (Group 1) and standard care in the remaining 3 HD units (Group 2) .

View Article and Find Full Text PDF

Atmospheric Deposition of Microplastics in South Central Appalachia in the United States.

ACS EST Air

January 2025

Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.

Due to the increased prevalence of plastic pollution globally, atmospheric deposition of microplastics (MPs) is a significant issue that needs to be better understood to identify potential consequences for human health. This study is the first to quantify and characterize atmospheric MP deposition in the Eastern United States. Passive sampling was conducted at two locations within the Eastern United States, specifically in remote South Central Appalachia, from March to September 2023.

View Article and Find Full Text PDF

SERS-based simplified analysis of paraquat in poisoning cases: Bypassing complicated pretreatment with antioxidant sensor.

Spectrochim Acta A Mol Biomol Spectrosc

March 2025

Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, China. Electronic address:

Applying antioxidant coating materials to prepare surface-enhanced Raman spectroscopy (SERS) sensing substrates can effectively enhance the sensitivity and stability for the analysis of molecules. In this study, we have leveraged SERS to develop an innovative sensor for the swift identification of Paraquat (PQ), enabling on-site detection of this herbicide. The newly devised sensor distinguishes itself through its exceptional oxidation resistance.

View Article and Find Full Text PDF

Plant diseases constantly threaten crops and food systems, while global connectivity further increases the risks of spreading existing and exotic pathogens. Here, we first explore how an integrative approach involving plant pathway knowledgegraphs, differential gene expression data, and biochemical data informing Raman spectroscopy could be used to detect plant pathways responding to pathogen attacks. The Plant Reactome (https://plantreactome.

View Article and Find Full Text PDF

We report a hyperspectral Raman imaging lidar system that can remotely detect and identify typical plastic species. The system is based on a frequency-doubled, Q-switched Nd:YAG laser operating at 532 nm and an imaging spectrograph equipped with a gated intensified CCD spectrometer. Stand-off detection of plastics is achieved at 6 m away with a relatively wide field of view of 1 × 150 mm, thus providing the groundwork for better solutions in monitoring marine plastic pollution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!